
MATH 304 - Linear Algebra

We continue the discussion of systems of linear equations. Consider a system of m linear equations
with n unknowns:

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
...

...
...

am,1x1 + am,2x2 + · · · + am,nxn = bm

We call such a system homogeneous if b1 = . . . = bm = 0. In other words, a system is homogeneous
if the last column of the augmented matrix of the system is a zero column. Thus, to each system of
linear equations there is associated a unique homogeneous system which has the same coefficient matrix.

We will see that there is a nice relation between solutions of a consistent system of linear equations
and solutions to the associated homogeneous system. In order to speak efficiently about solutions we
will use the following terminology: we say that an n-tuple of numbers (u1, u2, . . . , un) is a solution to
a system of equations in the unknowns x1, . . . , xn if setting x1 = u1, x2 = u2, . . . , xn = un yields a
solution to the system.

Remark. Homogeneous systems are always consistent: (0, . . . , 0) is a solution to any such system.

Our goal is to find a relation between solutions to a consistent system of linear equations (on the left)
and the associated homogeneous system (on the right):

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
...

...
...

am,1x1 + am,2x2 + · · · + am,nxn = bm

a1,1x1 + a1,2x2 + · · · + a1,nxn = 0
a2,1x1 + a2,2x2 + · · · + a2,nxn = 0

...
...

...
...

am,1x1 + am,2x2 + · · · + am,nxn = 0

Chose a solution (s1, . . . , sn) to our system. This means that

a1,1s1 + a1,2s2 + · · · + a1,nsn = b1

a2,1s1 + a2,2s2 + · · · + a2,nsn = b2

...
...

...
...

am,1s1 + am,2s2 + · · · + am,nsn = bm

.

Consider now another solution (t1, . . . , tn) to our system, so

a1,1t1 + a1,2t2 + · · · + a1,ntn = b1

a2,1t1 + a2,2t2 + · · · + a2,ntn = b2

...
...

...
...

am,1t1 + am,2t2 + · · · + am,ntn = bm

Subtracting i-th equations of each system yields:

a1,1(t1 − s1) + a1,2(t2 − s2) + · · · + a1,n(tn − sn) = 0
a2,1(t1 − s1) + a2,2(t2 − s2) + · · · + a2,n(tn − sn) = 0

...
...

...
...

am,1(t1 − s1) + am,2(t2 − s2) + · · · + am,n(tn − sn) = 0

.

This means that (t1 − s1, t2 − s2, . . . , tn − sn) is a solution to the associated homogeneous system. This
observation allows us to define a function T from the set of solutions to our system to the set of solutions
to the associated homogeneous system as follows: T takes a solution (t1, . . . , tn) of our system and sends
it to the solution (t1 − s1, t2 − s2, . . . , tn − sn) to the associated homogeneous system. In other words,

T (t1, . . . , tn) = (t1 − s1, t2 − s2, . . . , tn − sn).

It is clear that the function is one-to-one: if T (t1, . . . , tn) = T (h1, . . . , hn), i.e. (t1 − s1, t2 − s2, . . . , tn −

sn) = (h1 − s1, h2 − s2, . . . , hn − sn), then clearly ti = hi for each i.
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Suppose now that (u1, un, . . . , un) is a solution to the associated homogeneous system. Then, for
i = 1, 2, . . . , m, we have

ai,1(u1 + s1) + ai,2(u2 + s2) + . . . + ai,n(un + sn) =

= (ai,1u1 + ai,2u2 + . . . + ai,nun) + (ai,1s1 + ai,2s2 + . . . + ai,nsn) = 0 + bi = bi.

We see that (u1 + s1, u2 + s2, . . . , un + sn) is a solution to our system and T (u1 + s1, . . . , un + sn) =
(u1, u2, . . . , un). This shows that T is onto. Being both one-to-one and onto, T is a bijection. The
inverse function T −1 takes a solution (u1, un, . . . , un) to the associated homogeneous system and sends
it to (u1 + s1, u2 + s2, . . . , un + sn), i.e. T −1(u1, un, . . . , un) = (u1 + s1, u2 + s2, . . . , un + sn).

We summarize the above discussion in the following theorem.

Theorem. If a system of linear equations is consistent and (s1, ..., sn) is a solution to this system then
the assignment

(u1, un, . . . , un) 7→ (u1 + s1, u2 + s2, . . . , un + sn)

defines a bijection between the solutions to the associated homogeneous system and solutions to the
given system. In particular, the number of solutions of a consistent system is the same as the number
of solutions to the associated homogeneous system.

Let us apply the above discussion to the case when the given system is already homogeneous. We
see that given any two solutions (s1, . . . , sn) and (t1, . . . , tn) to the homogeneous system, the n-tuple
(s1 + u1, . . . , sn + un) is also a solution. Furthermore, it is straightforward to see that for any number c,
the n-tuple (cs1, . . . , csn) is again a solution. It is this property which makes homogeneous systems of
special interest to us, as the goal of the course is to study structures which are closed by addition and
multiplication by numbers (whatever it means).

The discussion below is optional. It outlines a reason why two consistent systems of

equations in the same unknowns have row equivalent augmented matrices.

Consider two consistent systems of linear equations in the unknowns x1, . . . , xn and assume that they
are equivalent (i.e. have the same sets of solutions). Adding equations of the form 0·x1+0·x2+. . .+0·xn =
0 if necessary, we may assume that each system has the same number of equations. The relation
between solutions to a system and to the associated homogeneous system established above shows that
the associated homogeneous systems are also equivalent. Let A1, A2 be the coefficient matrices of the
systems and let B1, B2 be the augmented matrices.

In the second set of notes we established the following result: if D1, D2 are matrices in reduced
row-echelon form and if the homogeneous systems of equations with coefficient matrices D1 and D2 are
equivalent, then D1 = D2 (we have seen how to recover Di from the set of solutions).

Let us apply this to the case when Di is row equivalent to Ai. As the four homogeneous systems
with coefficient matrices D1, A1, A2, D2 all have the same solutions, we conclude that D1 = D2. Thus
A1 and A2 are row equivalent. Consider the sequence of elementary row operations which transforms A1

to A2. Applying these operations to B1 we obtain a matrix B all of whose columns except possibly the
last one coincide with the corresponding columns of B2. Now the systems of equations with augmented
matrices B, B1, and B2 are all equivalent. Since the coefficient parts of B and B2 coincide and since
the systems with augmented matrices B and B2 have a common solution, we see that the last columns
of B and B2 must also be the same. In other words, B = B2 and consequently B1 and B2 are row
equivalent.
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