
MATH 304 - Linear Algebra

We continue our discussion of functions associated to matrices. Recall that to an m × n matrix
A = [ai,j ] we associate a function LA : Rn −→ R

m defined by

LA(u) = (r1·u, . . . , rm·u),

where ri stands for the i-th row of A. Functions of the form LA have the following very nice properties:

1. LA(u + w) = LA(u) + LA(w) for any two vectors u, w in R
n.

2. LA(cu) = cLA(u) for any vector u ∈ R
n and any number c ∈ R.

Indeed, let us justify the first property using the basic properties of dot product:

LA(u + w) = (r1·(u + w), . . . , rm·(u + w)) = (r1·u + r1·w, . . . , rm·u + rm·w) =

= (r1·u, . . . , rm·u) + (r1·w, . . . , rm·w) = LA(u) + LA(w)

The second property can be verified in a similar way.

Functions having the above properties will play an important role in this course so we make the following
definition:

Definition. A function L : R
n −→ R

m is called a linear transformation if it has the following
properties:

1. L(u + w) = L(u) + L(w) for any two vectors u, w in R
n.

2. L(cu) = cL(u) for any vector u ∈ R
n and any number c ∈ R.

Thus, the functions associated to matrices are linear transformations. We will soon see that the
converse is also true.

It is not hard to see that the defining properties of linear transformations are equivalent to the
following property, which we will often use in this course:

L is a linear transformation if and only if, for any vectors u1, . . . , uk and any numbers c1, . . . , ck in
R, we have

L(c1u1 + c2u2 + . . . + ckuk) = c1L(u1) + c2L(u2) + . . . + ckL(uk).

It will be convenient to define now some distinguished vectors in R
n. The zero vector is the vector

0 = (0, 0, . . . , 0). For every i between 1 and n we define ei to be the vector whose i-th coordinate is 1
and all other coordinates are 0. Thus

0 = (0, 0, . . . , 0), e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

We will use over and over the following two straightforward properties of the vectors ei:

• w·ej = wj for any vector w = (w1, . . . , wn) ∈ R
n and any 1 ≤ j ≤ n.

• w = w1e1 + w2e2 + . . . + wnen for any vector w = (w1, . . . , wn) ∈ R
n.

Example. In R
4 take w = (1, −1, 2, 5). Then

w·e3 = (1, −1, 2, 5)·(0, 0, 1, 0) = 2 = the third coordinate of w

w = e1 − e2 + 2e3 + 5e4 = (1, 0, 0, 0) − (0, 1, 0, 0) + 2(0, 0, 1, 0) + 5(0, 0, 0, 1).

Using the above properties we make the following crucial observation, which recovers the matrix A from
the linear transformation LA:
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Let A = [ai,j ] be an m × n matrix. Then LA(ej) is the j-th column of A (written as a row).

Indeed, the i-th coordinate of the vector LA(ej) is, by definition, ri·ej , where ri is the i-th row of A.
Now ri·ej is the j-th coordinate of the i-th row ri, i.e. it is ai,j . Thus

LA(ej) = (a1,j , a2,j , . . . , am,j)

which indeed is the j-th column of A written as a row.

Corollary. If A, B are m × n matrices such that LA = LB then A = B.

Indeed, as LA(ej) = LB(ej), we see that the j-th columns of A and B coincided for every j, so A = B.

We are now ready to prove that every linear transformations corresponds to some matrix.

Theorem. Let L : Rn −→ R
m be a linear transformation. Then L = LA for some m × n matrix A.

In order to justify this result note first that if A exists (i.e. L = LA), then A must be the matrix whose
j-th column is L(ej) for every j. So let A be the matrix with columns L(e1), L(e2), . . . , L(en). Then
LA(ej) = j-th column of A = L(ej) for j = 1, 2, . . . , n. Now let w = (w1, . . . , wn) be an arbitrary vector
in R

n. Recall that w = w1e1 + . . .+wnen. Using the fact that both L and LA are linear transformations
we get

L(w) = L(w1e1 + w2e2 + . . . + wnen) = w1L(e1) + w2L(e2) + . . . + wnL(en) =

= w1LA(e1) + w2LA(e2) + . . . + wnLA(en) = LA(w1e1 + w2e2 + . . . + wnen) = LA(w).

Thus indeed L = LA.

We may summarize the above discussion as follows: the association A 7→ LA is a bijection between the
set of all m × n matrices and the set of all linear transformations from R

n to R
m.

The following corollary is a simple consequence of our discussion above:

Corollary. 1. If L1, L2 are two linear transformations from R
n to R

m and L1(ei) = L2(ei) for
i = 1, 2, . . . , n then L1 = L2.

2. For arbitrary vectors w1, . . . , wn in R
m there exists unique linear transformation L : Rn −→ R

m such
that L(e1) = w1, L(e2) = w2, . . . , L(en) = wn.

Example. Is there a linear transformation L : R3 −→ R
2 such that L(e1) = (1, 2) and L(e3) = (−1, 3)?

Solution. We know that any linear transformation L : R3 −→ R
2 is of the form LA for some 2 × 3

matrix A. We also know that the i-th column of A is LA(ei). Thus, A must be a matrix of the form

A =

[

1 s −1
2 t 3

]

for some numbers s, t. Conversely, any choice of s, t will yield a matrix A for which LA has the required
properties.

Example. The constant function from R
n to R

m which sends every vector of Rn to the zero vector in
R

m is clearly a linear transformation. We will call it the zero transformation. It corresponds to the
m × n matrix whose all entries are zero. We call it the zero matrix and denote by 0.

Example. The identity function I : Rn −→ R
n, I(u) = u for all u, is clearly a linear transformation.

The n × n matrix corresponding to I has i-th column equal to I(ei) = ei for i = 1, 2, . . . , n. We denote
this matrix by In (or just I if there is no need to indicate the size n) and call it the identity matrix.

Recall that in calculus, which studies functions form R to R we produce new functions form the ones
we already have by various procedure, for example by adding or composing them. We can do similar
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constructions with functions from R
n to R

m. Let F , G be two such functions. We define F + G to be
the function which sends any u ∈ R

n to F (u) + G(u):

(F + G)(u) = F (u) + G(u).

For any number c ∈ R we define a function cF as follows:

(cF )(u) = c · F (u) for any u ∈ R
n.

Thus we can add functions and multiply functions by numbers (as we do with vectors). Of course, we
can also compose functions, provided the codomain of the first function is equal to the domain of the
second. Our next goal is to see how these operations behave on linear transformations. The answer is
given by the following, rather simple, result.

Theorem. Let F, G : Rn −→ Rm and S, T : Rm −→ Rk be linear transformations. Then

1. F + G is a linear transformation.

2. cF is a linear transformation for any c ∈ R.

3. S ◦ F is a linear transformation from R
n to R

k.

4. if n = m and F is a bijection then F −1 is a linear transformation.

5. (S + T ) ◦ F = S ◦ F + T ◦ F and (cS) ◦ F = c(S ◦ F ) for any c ∈ R.

6. S ◦ (F + G) = S ◦ F + S ◦ G and S ◦ (cF ) = c(S ◦ F ) for any c ∈ R.

The first 4 properties state that certain function is a linear transformation. In order to justify this
we need to verify that this function has the two properties in the definition of linear transformation.
We will verify the first property. The second property can be verified in a similar way which we leave
to the reader as an exercise.

For 1. we have

(F + G)(u + w) = F (u + w) + G(u + w) = F (u) + F (w) + G(u) + G(w) =

= F (u) + G(u) + F (w) + G(w) = (F + G)(u) + (F + G)(w).

For 2. we have

(cF )(u + w) = c · F (u + w) = c · (F (u) + F (w)) = c · F (u) + c · F (w) = (cF )(u) + (cF )(w).

For 3. we have

(S ◦ F )(u + w) = S(F (u + w)) = S(F (u) + F (w)) = S(F (u)) + S(F (w)) = (S ◦ F )(u) + (S ◦ F )(w).

For 4. we want to show that F −1(u + w) = F −1(u) + F −1(w). Since F is one-to-one, it suffices to show
that when we apply F to each side of the last equation, we get equal results:

F (F −1(u) + F −1(w)) = F (F −1(u)) + F (F −1(w)) = u + w = F (F −1(u + w))

(we use the fact that F (F −1(x)) = x for any x).
The last two properties establish equality of certain functions. We justify the first equality of 5., the

remaining equalities are handled in a similar way. To prove that two functions are equal one needs to
show that they have the same value at every element of the domain. Let u ∈ R

n be an arbitrary vector.
Then

((S + T ) ◦ F )(u) = (S + T )(F (u)) = S(F (u)) + T (F (u)) = (S ◦ F )(u) + (T ◦ F )(u) = (S ◦ F + T ◦ F )(u).

We proved that every linear transformation is of the form LA for some matrix A. Suppose that
F = LB for an m×n matrix B and S = LA for an k×m matrix A. Since S◦F is a linear transformation,
we have LA ◦ LB = LC for some k × n matrix C. How can we compute C knowing A and B? Similarly,
if G = LD then, since F + G is a linear transformation, we must have LA + LD = LK for some m × n

matrix K. How can K be obtained from A and D? We will answer these questions in the next note.
The answers will lead to us to a way of adding and multiplying matrices.
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