
MATH 304 - Linear Algebra

We are going to answer the questions raised at the end of the previous note.
Recall that to every m × n matrix A we associate a linear transformation LA : Rn −→ R

m and any
linear transformation L is associated to some (unique) matrix A. We showed that the j-th column of A

is L(ej) (when considered as a vector).
Suppose now that A and B are two m × n matrices. We have seen that the sum of two linear

transformations is again a linear transformation. Thus LA + LB = LC for some m × n matrix C. We
want to know how C can be obtained form A and B. Well, the j-th column of C is (LA + LB)(ej) =
LA(ej) + LB(ej), i.e. the j-th column of C is the sum of the j-th column of A and the j-th column
of B. In othe words, the i, j-entry of C is the sum of the i, j-entries of A and B. Therefore we define
addition of matrices as follows: if A = [ai,j ] and B = [bi,j ] then A + B = [ci,j ], where ci,j = ai,j + bi,j .
It follows that LA + LB = LA+B.

Example. Let

A =





3 −1 2 3 −1
1 −1 2 3 5
2 −3 6 9 4



 , B =





−1 2 0 2 −3
4 2 −2 1 −1
7 −2 4 6 −3



 .

Then

A + B =









3 + (−1) −1 + 2 2 + 0 3 + 2 −1 + (−3)

1 + 4 −1 + 2 2 + (−2) 3 + 1 5 + (−1)

2 + 7 −3 + (−2) 6 + 4 9 + 6 4 + (−3)









=





2 1 2 5 −4
5 1 0 4 4
9 −5 10 15 1



 .

It should be clear that the addition of matrices is commutative and associative.
Suppose now that c ∈ R is a number. We know that cLA is a linear transformation, so cLA = LC

for some matrix C. We leave it as an exercise to show that the i, j-entry of C is equal to c times the
i, j-entry of A: ci,j = c · ai,j . Thus we define c · A to be the matrix obtained from A by multiplying each
of its entries by c. We then have cLA = LcA.

Example. Let

A =





3 −1 2 3 −1
1 −1 2 3 5
2 −3 6 9 4



 .

Then

3A =





9 −3 6 9 −3
3 −3 6 9 15
6 −9 18 27 12



 .

Thus we can add matrices of the same size and multiply them by numbers.
Suppose now that A is an k × m matrix and B is an m × n matrix. Then the composition LA ◦ LB

is defined and it is a linear transformation from R
n to R

k. Thus LA ◦ LB = LC for some k × n

matrix C and our next goal is to see how C can be obtained from A and B. The j-th column of C is
(LA ◦ LB)(ej) = LA(LB(ej)). Thus the i-th entry in the j-th column of C, i.e. ci,j , is equal to the i-th
coordinate of LA(LB(ej)), which is the dot product of the i-th row of A and LB(ej). Since LB(ej) is
the j-th column of B, we see that ci,j is the dot product of the i-th row of A and the j-th column of B.
This motivates the following very important definition.

Definition. Let A = [ai,j ] be an k × m matrix and B = [bi,j ] be an m × n matrix. The product
AB of A and B is the k × n matrix C = [ci,j ] whose i, j-entry is the dot product of the i-th row of A

and the j-th column of B, for any 1 ≤ i ≤ k and 1 ≤ j ≤ n:

ci,j = ai,1b1,j + ai,2b2,j + . . . + ai,mbm,j .
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Directly from our discussion above we have LA ◦ LB = LAB .

Example. Let

A =





3 −1 2 3 −1
1 −1 2 3 5
2 −3 6 9 4



 , B =











−1 2
4 2
7 −2

−1 3
4 −2











.

Then the product AB is defined (since the number of columns of A is the same as the number of rows
of B) and it is a 3 × 2 matrix [ci,j ], where

c1,1 = dot product of the first row of A and the first column of B = (3, −1, 2, 3, −1)·(−1, 4, 7, −1, 4) =

= −3 − 4 + 14 − 3 − 4 = 0;

c1,2 = dot product of the first row of A and the second column of B = (3, −1, 2, 3, −1)·(2, 2, −2, 3, −2) =

= 6 − 2 − 4 + 9 + 2 = 11;

c2,1 = dot product of the second row of A and the first column of B = (1, −1, 2, 3, 5)·(−1, 4, 7, −1, 4) =

= −1 − 4 + 14 − 3 + 20 = 26;

c1,2 = dot product of the second row of A and the second column of B = (1, −1, 2, 3, 5)·(2, 2, −2, 3, −2) =

= 2 − 2 − 4 + 9 − 10 = −5;

c3,1 = dot product of the third row of A and the first column of B = (2, −3, 6, 9, 4)·(−1, 4, 7, −1, 4) =

= −2 − 12 + 42 − 9 + 16 = 35;

c3,2 = dot product of the third row of A and the second column of B = (2, −3, 6, 9, 4)·(2, 2, −2, 3, −2) =

= 4 − 6 − 12 + 27 − 8 = 5.

Thus

AB =





0 11
26 −5
35 5



 .

Note that if A is an k × m matrix, B is an m × n matrix and C is an n × l matrix, then

L(AB)C = LAB ◦ LC = (LA ◦ LB) ◦ LC = LA ◦ (LB ◦ LC) = LA ◦ LBC = LA(BC)

(we used the fact that composition of functions is associative). It follows that (AB)C = A(BC), i.e.
matrix multiplication is associative.

In the previous note we have seen that composition of linear transformations is distributive over
addition of linear transformations. We can now translate this property to matrix multiplication and
addition.

Let A, B be two k × m matrices and C, D two m × n matrices. Then (LA + LB) ◦ LC = LA ◦ LC +
LB ◦ LC . This means that (A + B)C = AC + BC. Similarly, from LA ◦ (LC + LD) = LA ◦ LC + LA ◦ LD

we conclude that A(C + D) = AC + AD. In other words, multiplication of matrices is distributive over
addition.

Let us repeat one more time that product AB of two matrices is only defines if the number of columns
of A is the same as the number of rows of B. This condition is always satisfied if A, B are square
matrices of the same size. The set of all square matrices of size n will be denoted by Mn(R):

Mn(R) is the set of all n × n matrices.

The sum and product of any two n×n matrices is again an n×n matrix. The set Mn(R) equipped with
addition and multiplication is one of the most fundamental and most important objects in mathematics.
Let us list the basic properties of these two operations on Mn(R):
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1. (A + B) + C = A + (B + C) for any A, B, C in Mn(R) (addition is associative).

2. A + B = B + A for any A, B in Mn(R) (addition is commutative).

3. A + 0 = A for any A in Mn(R) (here 0 is the zero matrix).

4. for any A ∈ Mn(R) there is B ∈ Mn(R) such that A + B = 0 (i.e we can subtract; B = −A).

5. (AB)C = A(BC) for any A, B, C in Mn(R) (multiplication is associative).

6. AI = IA = A for any A in Mn(R) (here I = In is the identity matrix).

7. (A + B)C = AC + BC and C(A + B) = CA + CB for any A, B, C in Mn(R) (multiplication
distributes over addition).

8. if n > 1 then multiplication is not commutative i.e. there exists matrices A, B such that

AB 6= BA.

Let us justify the last property: take

A =

[

1 0
0 0

]

, B =

[

0 1
0 0

]

.

Then

AB =

[

0 1
0 0

]

, and BA =

[

0 0
0 0

]

.

The above example also shows that the product of two non-zero matrices can be zero!
We have seen in the previous note that if a linear transformation is a bijection then the inverse

function is also a linear transformation. We know that LA is a bijection if and only if A is a square
matrix of size n such that rank(A) = n. We will call such A an invertible matrix. The inverse function
to LA, being linear, is of the form LB for some matrix B. From LA ◦ LB = I and LB ◦ LA = I we get
that AB = I = BA. We will denote B by A−1 and call it the inverse of A. Thus L−1

A = LA−1 . In the
next note we will learn how to find A−1 for a given invertible matrix A.

Note that if both A and B are invertible then (LA ◦ LB)−1 = L−1
B ◦ L−1

A . In other words, L(AB)−1 =
LB−1A−1 and consequently (AB)−1 = B−1A−1. This is a very important property (which only manifests
itself when multiplication is not commutative).

If A and B are invertible n × n matrices then AB is also invertible and (AB)−1 = B−1A−1.

This property can be easily justified directly:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

and
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

In general, if A1, A2, . . . , Ak are invertible then

(A1A2 . . . Ak)−1 = A−1
k A−1

k−1 . . . A−1
1 .

We end this note by introducing a few names for some spacial types of square matrices.

The main diagonal of a square n × n matrix A = [ai,j ] consists of entries a1,1, a2,2, . . . , an,n. Thus
we can say that the identity matrix is the matrix with 1’s on the main diagonal and zero everywhere
else.

A diagonal matrix is a square matrix with all the entries outside the main diagonal equal to 0.
An upper triangular matrix is a square matrix with all entries below the main diagonal equal to 0.
A lower triangular matrix is a square matrix with all entries above the main diagonal equal to 0.

It is easy to see that diagonal matrices are exactly the matrices which are both lower triangular and
upper triangular.
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