Solutions to Exam I

Problem 1. a) The length of the vector v = 2i — 3j + k equals

[v| = /22 + (-3)2+ 12 = V14.

b) The vertices are A(0,0), B(0,3 + v/3), C(3, Thus AB =< 0,3 + 3 >,
A0 =< 3,v/3 >. It follows that |zﬁ| = \/O2 3+\/_) = 3+ /3, |1@| =

32 + (v/3)2 =12 and

AB-AC  (3+V3V3
T [AB|AC| B+ V3WVI2

=1/2,

ie. LA=m/3.
Similarly, Ezl =< 0,-3 — 3 >, @ =< 3,—3 >. It follows that |E>4| =
V02 + (-3 - V3)2 =34 V3, [BC| = /F 1 (-3 = 3V2 and
o BA-BC _(-3-B)(-3
BA|IIBG|  (3+3)3V2
ie. 4B =7/4.

Since the sum of all three angles in a triangle equals 7, we get £C =7 — /3 —
/4 = b5r/12.

) _1/v3= Va2,

c) Recall that vectors < a,b > and < b, —a > are always orthogonal. Thus < 4, —3 >
is orthogonal to < 3,4 >. Since | < 4,—3 > | = 5, the vector < 4/5,—-3/5 > is a

unit vector orthogonal to < 3,4 >.

d) Let a =< 1,0,1 > and b =< 1,1,0 >. We are looking for vectors u, w such

that u is parallel to a, w is orthogonal to a and b = u + w. Since u is parallel to



a, we may write u = ta for some scalar ¢t. Taking the dot product of both sides of

the equality b = ta + w with a we get
b-a=ta-a+w-a=ta-a

(sincew-a=0). Thust=b-a/a-a=1/2,ie. u=a/2=<1/2,0,1/2 >. Finally,
w=b—-u=<1/2/1,-1/2>.

Problem 2. a) (2i+j—k) x (i—2j+3k)=<2,1,-1>x <1,-2,3>=
<1-3—(=1)(=2),—(2:3—(=1)-1,2-(=2)—1-1>=< 1,-7,—5 >. Alternatively,

you could use the fact that the cross product is distributive with respect to addition.
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¢) The volume of the parallelepiped determined by vectors u, v, w equals |u-(vxw)].

For u=<0,0,1>,v=<1,0,1>, w=<1,1,1 > the volume equals 1 .

d) The area of a triangle with vertices A, B, C equals half of the area of the
parallelogram determined by the vectors AB and 1@ , S0 it is equal to |E X E |/2.
In the problem, A(0,0,0), B(1,0,1), C(1,1,1), so the area equals

| <1,0,1>x<1,1,1>|/2=1+/2/2.

Problem 3. a) 22 + ¢ + 22 = 2 — y + 2 may be written as
(z—1/2)%+(y+1/2)% + (2 — 1/2)* = 3/4

so this equation describes the sphere with center (1/2,—1/2,1/2) and radius v/3/2.

b) Adding the equations 2z —y — 2z = 0 and = — 2y + z = 0 yields 3z — 3y = 0, i.e.
r=v9y. Thusz=2x—y=2r—x =x,i.e. z =y = z. It follows that the parametric

equation is z = t,y = t,z =t and the symmetric equation is z = y = z.

¢) The plane containing points A, B, C' is orthogonal to a vector orthogonal to both
1@ and 1@, i.e. it is orthogonal to 1@ X zﬁ In the problem, A(1,0,1), B(0,1,1),
C(1,1,0). Thus AB x AC =< —1,1,0 > X < 0,1,—1 >=< —1,—1,—1 >. Thus

we want an equation of the plane passing through (1,0,1) and orthogonal to
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< —-1,-1,-1>, whichis —(z —1)—y—(2—1)=0,ie. z+y+2=2.

Problem 4. a) The curvature of a curve r(t) is defined as k(t) = |T'(¢)|/v(t)|,
where T(t) = v(t)/v(t) is the unit tangent vector, v(t) = r'(t) is the velocity and
v(t) = |v/(t)| is the speed. It turns out that the curvature of a curve does not depend
on the parametrization. This means that the if r1(¢) is another parametrization of
the same curve then at the point r(¢) = ry(¢;) the curvature k(t) computed for the
first parametrization is the same as the curvature k(¢;) computed for the second
parametrization. Thus curvature is a geometric notion which describes how the
curve curves at a given point. For plane curves, the inverse of the curvature is equal
to the radius of a circle which ”fits” best the curve at a given point. The curvature

can be computed from the formula k(t) = |v(t) x a(t)|/v3(¢).

b) We have r(t) =< 2t — sin 2t, — cos 2t,4sint >.
The velocity v(t) = r'(t) =< 2 — 2 cos2t,2sin 2t,4 cost >.
The speed v(t) = |v(t)| = /(2 — 2cos2t)? + (2sin2¢)2 + (4cost)? =

\/4—8c0s2t+4c0522t+4sin22t+ 16 cos?2t =

\/4+4(COS2 2t + sin® 2t) — 8(2cos?t — 1) + 16cos?t =4+ 4+ 8 = 4.

The acceleration a(t) = v'(t) =< 4sin 2¢,4 cos 2t, —4sint >.

The unit tangent vector T(t) = v(t)/v(t) =< (1 — cos2t)/2,sin 2t/2, cost >.

The unit normal vector

N(t) = T'(t) _ <sin2t,cos2t, —sint > _ sin 2t , cos 2t ’ —sint .
IT'(t)]  /sin? 2t + cos? 2t + sin ¢t V1+sin?t V1 +sin’t V1 +sin’¢

The curvature k(t) = |T'(t)|/v(t) = V1 + sin*t/4.

c) The velocity of the parametric curve r(t) =< tsint, t cost, %ﬁt:’/ 2 > equals

v(t) =< sint + tcost,cost — tsint, V2t > .

The speed v(t) = \/(sint +tcost)? + (cost — tsint)2 + (v/2t)2 =

\/sin2t—|— 2tsintcost + t2cos2t + cos?t — 2tsintcost + t2sin’ t + 2t = V1 + 2 + 2t = 1+t¢.

The length of the curve between r(0) and r(t) is
t t
s(t) = / v(u)du = / (14 u)du =t +1*/2.
0 0
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From the equation s = t + t2/2 we get 1 + 25 = 1+ 2t + ¢ = (1 + t)?, hence
t =+/2s+ 1 — 1. The arc-length parametrization is then

24/2
r(s) =< (v/2s + 1-1)sin(v/2s + 1-1), (v/2s + 1—1) cos(v/2s + 1-1), T‘[(\/zs +1-1)%% > .
d) A particle moves in the space with acceleration a(t) =< 2, 6t, 12t> >. The velocity

of the particle equals
V(t) = /a(t)dt =< 2t + C1, 3t2 + Co, 4t3 + c3 >

for some constants ¢y, ¢z, c3. The condition v(1) =< 3,4,5 > implies that ¢; = ¢, =
c3 =1, e v(t) =< 2t+1,3t> + 1,4t> + 1 >. The position of the particle equals

r(t) =/v(t)dt =<t +t+d,t +t+do,t" +t+d3>.

The condition r(1) =< 3,2,2 > implies that d; = 1, dy = ds =0, i.e.
r(t) =<t®+t+1,t3+¢ t*+t >. Thus, at t = 0 the particle is at the point (1,0,0).

Problem 5. a) The cylindrical coordinates of the point (1,1,v/6) are (r,8,2),
where 2 = 124+ 12 =2, tanf = 1/1 = 1, z = /6. Thus § = 7/4 and the cylindrical
coordinates are (v/2,7/4,/6).

The spherical coordinates of this point are (p, ¢,8), where § = 7/4 is the same
as for the cylindrical coordinates, p? = 12 + 12 + V6 = 8 and cosp = v6/p =
v6/4/8 = v/3/2. Thus ¢ = 7/6 and the spherical coordinates are (2v/2,7/6,7/4).

b) The point whose cylindrical coordinates are (1,7/6, 1) has Cartesian coordinates
(cosm/6,sinm/6,1). The spherical coordinates are (p, ¢, ), where § = 7/6 (same
as for cylindrical coordinates), p? = cos? /6 + sin®7/6 +1 =2 and cos¢ = 1/p =
1/4/2 =4/2/2. Thus ¢ = 7/4 and the spherical coordinates are (v/2,7/4,7/6).

c¢) A plane curve in polar coordinates has equation r = cos. Since x = rcosf =
cos? 0,y = rsin @ = cosfsin §, the curve has parametric equation r(f) =< cos? §,sin f cos § >
in Cartesian coordinates. The velocity is v(f) =< —2sinfcosf,cos? — sin?§ >.
The speed v(f) = 1/(—2sinfcosf)? + (cos?f — sin? )2 = /(cos? f + sin? )2 = 1.

The acceleration a(f) =< —2(cos?§—sin?§), —4sin  cos § >. Since the parametriza-

tion r(f) is a natural (arc-length) parametrization, we have T(f) = v(#) and



k(0) = |T'(8)| = |a(6)|. Thus

k(0) = \/[(—2)(0052 0 — sin?0)]2 + (—4sin 0 cos )2 = \/4(cos2 0 + sin” )2 = 2.

Remark. The computation simplify significantly when the formulas sin 2z =

2

2sin z cos z, cos 2z = cos? z — sin’ z are used.

Remark. One could avoid the computations by observing that
r(f) =< (1 —cos20)/2,sin20/2 >=<1/2,0 > +1/2 < — cos 26, sin 20 >

i.e. the curve is a circle centered at (1/2,0), with radius 1/2. The curvature of a

circle with radius r is 1/r, so k(6) = 2.

Problem 6. a) The domain of the function f(z,y) =In(z? +z +y* — 1) is
D={(z,y): 2> +z+1y>—1>0} ={(z,9): (z+1/2)% + 4> > 5/4}

so D is the outside of the circle with center (—1/2,0) and radius v/5/2.

b) The level k curve of the function f(z,y) = € is given by the equation e*¥ = k.
Thus the curves exist only for £ > 0 and then they are given by zy = Ink. For
k € (0,1) these curves are hyperbolas in the second and fourth quadrants, for k > 1
these are hyperbolas in first and third quadrants and for £ = 1 the level curve is the
union of the vertical and horizonal axes.
c) To see that the limit  lim St

(z)—(00) > +
line y = kx. Then the limit will take form

does not exist let us approach (0,0) on the

x? + k328

- @ = 2
230 22 + kg2 /(A +k).

For k = 0 we get limit 1 and for £k = 1 we get limit 1/2. Since these limits have

2,3
different values, the limit  lim % does not exist.
(z,9)—(0,0) T + Yy
2
d) Let f(z,y,2) = ﬁ for (z,y,2) # (0,0,0) and f(0,0,0) = a. Since both

the numerator and denominator are continuous functions, this function is continuous

at all points except possibly the points where the denominator vanishes, i.e. the
2

7y

lim ———~—— = q. In order to
(2,9,2)—(0,0,0) T2 + y2 + 22

origin. It is continuous at the origin iff
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compute the limit we use spherical coordinates z = psin¢cosf, y = psin ¢sinf,

z = pcosf. Thus

lim ~ lim p®sin® ¢ cos? sin? 4
(z,y,2)—(0,0,0) 2 —+ y2 + 22 - p—0 p2

z?y : -3 2 () in2
= lim psin® ¢ cos“fsin“f§ = 0
p—0

since p approaches 0 and sin® ¢ cos? § sin? § is bounded between —1 and 1. Thus the

function is continuous iff ¢ = 0.
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Problem 7. a) Suppose that the acceleration and velocity of a smooth parametric
curve r(t) are always orthogonal. Let T(t) be the unit tangent vector. Thus v(t) =
v(t)T(t). We see that a(t) = v'(t) = ¢'(¢t)T(t) + v(¢t)T'(¢). Differentiation of the
equality T(t) - T(t) = 1 shows that T(¢) - T'(¢) = 0. Thus

0=a(t)-v(t) = (V'(O)T(t) + v(t)T'(2)) - (v(t)T(2)) = ' ()v(t).

Since v(t) is never 0, we conclude that v'(t) = 0 for all ¢, i.e. v(¢) is constant.

b) A plane curve r(t) has constant curvature k¥ > 0. We may assume that the
parametrization is arc-length. Thus v(t) = 1. It follows that T(¢) = v(t) and
k = k(t) = |a(t)|. Thus we have v(t) - v(t) = 1 and a(t) - a(t) = k?. Differentiation
of these identities yields v(t) - a(t) = 0 and a(t) - a’(¢) = 0. Thus both v(¢) and
a'(t) are orthogonal to a(t), so the vectors v(t) and a’(t) are parallel. In other
words, a'(t) = f(t)v(t) for some scalar f(t). Differentiation of v(¢) - a(t) = 0 gives
a(t)-a(t) +v(t)-a'(t) =0, ie. —k?=v(t)-a'(t) = f(t)v(t) - v(t) = f(t). Thus
0= k*>v(t)+a'(t) = (k*r(t)+a(t))’. Therefore k?r(t)+a(t) is constant. Denote this
constant (z,y). Then r(t) =< z/k? y/k® > +a(t)/k*. Since a(t)/k* has constant
length 1/k, it follows that the curve is a circle with center (z/k?,y/k?) and radius
1/k.



