Exam II, Math 323

March 24, 2004

Problem 1. a) Let f(z,y) = (¥z + ¢¥)® and u =< 1/v/2,1/v/2 >. Compute,
using the definition, the directional derivative D, f(0,0) of the function f at the

point (0,0) in the direction of the unit vector u. (8 points)
o)
b) (optional) As in a), one can compute the partial derivatives 6_f(0’0) =1=
T
of

8_(0’ 0) (this, in fact, was a problem on a quiz). Compare D, f(0,0) and V f(0, 0)-u.
Y

Can you explain why this does not contradict one of our theorems. (4 points)

Problem 2. Find the equation of the plane tangent to the surface
x2+y2+z2—xyz:2

at the point (1,1,0). (8 points)

Problem 3. a) State the Implicit Function Theorem. (5 points)

b) The Implicit Function Theorem implies that the surface
w2+y2+z2—xyz:2

is a graph of a function z = g(z,y) near the point (1,1,0) (why?). Compute the
gradient Vg(1,1). (9 points)

c) Let h(s,t) = F(z(s,t),y(s,t)). Compute %(O, 1) knowing that

_ 1 Wy P g OF g
20,0 =1, 4(0,1) =2, FO) = -1 FO =1, 512 =3, F-(1.2) =2
(9 points)

Problem 4. Find largest and smallest values of the function f(z,y) = x+y subject
to the condition z* + 4zy + 2y* + 1 = 0. (12 points)



Problem 5. Let f(z,y) = 2% — ?> — 2%y? . Find the largest and smallest values of
f on the region D contained inside the circle z2 + y? = 1 and above the z-axis. (12

points)
Problem 6. Classify all critical points of the function f(z,y) = x? + 2zy* — 4zy>.
(12 points) (Hint: there are 5 such points).
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The following problems are optional. You may earn extra points, but work on these
problems only after you are done with the other problems

Problem 7. Find a non-zero vector tangent at the point (1,1,1) to the curve of

intersection of the surfaces z* + y* + 2* = 3 and z + y — 22 = 0. (10 points)

Problem 8. Suppose that a continuously differentiable function f(z,y) satisfies
the equation

0 0
$5§($,y)——3y5£($,y)230

Show that, for every constant ¢, the function f is constant on the curve z?+3y? = c.

(15 points)



