Solutions to Exam 11

Problem 1. a) Recall that the directional derivative D, f(p) of the function f at

the point p in the direction of the unit vector u is defined as follows

Duf(p) — lim f(p+t11) —f)

In our case, f(z,y) = (Y= + ¢y)% p=(0,0), and u =< 1/v/2,1/v/2 >. Thus

Dyuf(p) = lim (\3/%1 i/%> = lim@ =8/V2=4V2.

t—0 t—0 t
b) The same method as in a) shows that ?(0,0) =1= %(0,0), ie.
€L )

Vf£(0,0) =< 1,1 >. It follows that
V(0,0) - u=2/v2# Duf(0,0),

which seems to contradict the theorem which states that D,f(p) = Vf(p) - u.
However, there is no contradiction here, because the theorem assumes that f is

differentiable at p and our function is not differentiable at (0, 0).
Problem 2. The surface is defined by f(z,y,2) = 0, where
f(@,y,2) =2+ 4> + 2° —ayz — 2.

Thus Vf =< 2z—yz,2y—xz,2z—zy >,s0 Vf(1,1,0) =< 2,2, —1 >. The equation
of the plane tangent to this surface at the point (1,1,0) is then

2 —-1)+2(y—1)—2=0 or 2z+2y—z=4.
Problem 3. a) Implicit Function Theorem: Let f(x1, s, ..., Zpn, Zny1) be a con-

tinuously differentiable function near a point (ay, ..., a,41) such that f(ay,...,an41) =

0 and

(a1, -.-,an41) # 0. There exists a continuously differentiable function
Tn+1
g(z1,...,x,), defined in some neighborhood U of the point (ay,...,a,), such that
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near the point (ay,...,a,41) the hyper-surface f(z1,2, ..., Zn,Tni1) = 0 coincides
with the graph of the function g(x1,...,x,). In other words, g(ai,...,an) = Gni1

and if (zy, ..., Tp41) is sufficiently close to (ay, ..., an+1) then it satisfies the equation

flz1, 22, ooy Tny Tpy1) = 0 iff 201 = g1, .., T0)-
b) The Implicit Function Theorem implies that the surface
f(z,y,2) =2’ +y*+ 2> —zyz—2=0

0
is a graph of a function z = g(z, y) near the point (1,1, 0), since —f(l, 1,0) =-1#

0z
0. From the equality f(z,y, g(z,y)) = 0 and the chain rule we get that
Oz L0 -1
and of
@ _a_y(lalao) . —2 -

(R Rk
9y 1,10 -1
Thus the gradient Vg(1,1) =< 2,2 >.

c) Let h(s,t) = F(z(s,t),y(s,t)). The chain rule tells us that
G (@D = 5o (@) y(@ ) 5 (@) + 5 (a(ab).y(a,b) 5 @ b)
Taking (a,b) = (0,1) we see that
%(0,1):3-(—1)+2-1:—1.

Problem 4. Recall that for continuously differentiable functions f(z1,...,z,),
g(x1,...,x,), if f attains at a point (ay,...,a,) largest (smallest) value subject to
g(x1,...,2,) = 0 then either Vg(as,...,a,) = 0 or Vf(aq,...,a,) = AVg(ay, ..., an)
for some (unknown) constant A\. Thus points where f attains largest (smallest)
value subject to g = 0 are either among the solutions to the system of equa-
tions g(zy,...,z,) = 0, Vg(z1,...,2,) = 0 or among the solutions to the system
9(z1,...,x,) =0, Vf(zy,...,2,) = AVg(21, ..., z,,) (with unknowns z1, ..., z,, and ).

In order to find largest and smallest values of the function f(z,y) = z+y subject
to the condition g(x,y) = z* + 4y + 2y*> + 1 = 0 we compute Vf =< 1,1 > and
Vg =< 4x3 + 4y, 4z + 4y > (it is not hard to see that the equation g(z,y) = 0
describes a closed and bounded set, so f indeed attains its largest and smallest

values subject to g = 0). We look first at the second system of equations, i.e. at
ot Aoy + 22 +1=0, 1=\4z>+4y), 1=\4z+4y).
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The last 2 equations imply that A # 0 and 42® = 4z, i.e. 2 = 0,1 or —1. Since
9(0,y) = 0 has no solutions, we are left with two possibilities: either z = 1 or
r = —1. If z = 1 then g(1,y) = 2(y + 1) = 0 implies that y = —1. Similarly,
for z = —1, we have g(—1,y) = 2(y — 1)2 = 0, i.e. ¥ = 1. So we have at most
two solutions: (1,—1) and (—1,1). But in fact neither one is a solution, since
Vg(1,-1) =0=Vg(-1,1).

Both (1,—1) and (—1, 1) are solutions to the system g(z,y) = 0, Vg(z,y) = 0

and these are the only solutions to this system (which, explicitly, is
ot dry +22 +1=0, 42°+4y=0, 4dx+4y=0 ).

Thus the only points where f can attain largest (smallest) value are (1,—1) and
(—1,1). Note that f(1,—1) =0 = f(—1,1). This says that the largest and smallest
values coincide and are equal to 0.

Let us analyze this further. Since the largest and smallest values coincide, the
function f must be constant on the set of solutions to g(z,y) = 0 and therefore f
attains largest (or smallest) value at every solution to g(x,y) = 0. This shows that
the only solutions to g(z,y) = 0 are (1,—1) and (—1,1). One can show this easily
directly, by observing that

9(z,y) =2(z +y)” + (® — 1)

Exercise. Find the largest and smallest values of f subject to z*+4zy+2y%2—1 = 0.

Problem 5. Let f(z,y) = 2? —y?> — 2%y . Thus Vf =< 2z — 2zy? —2y — 2yx? >.
To find critical points we solve the system = — zy? = 0, —y — y22 = 0. The second
equation —y(1 + z?) = 0 implies that y = 0 (since 1 + z2 is never 0). Now the first
equation tells us that also z = 0. In other words, (0, 0) is the only critical point of f.
But it is not in the interior of D, so we do not need to worry about it (this point is
on the boundary of D, so it will be considered when we investigate the boundary).
It follows that both the largest and smallest values are attained at points on the
boundary of D.

The boundary of D consists of two pieces: the interval y =0, —1 <z < 1 and
the semicircle 22 + ¢ = 1,y > 0.
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On the interval the function is f(z,0) = z*. Thus, on this interval, f attains

largest value equal to 1 at x = —1 and x = 1 and smallest value equal to 0 at z = 0.
On the semicircle we have y = /1 — 22 and our function equals g(z) = f(z,v1 — 22) =
2 —(1—-2%)—2)(1—-2%) =2*+22 -1,z € [-1,1]. Now ¢'(z) = 42® — 22 =
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27(222—1) =0 whenz = 0orz = 1/v/2 or z = —1/v/2. We have g(—1) = g(1) = 1,
g(0) = —1, g(1/v/2) = g(—1/+/2) = —1/4. Thus the largest value of f on the semi-
circle is 1 and the smallest value equals —1.

Putting all the above together, we see that on D the function f has largest value

equal to 1 and smallest value equal to —1.

Problem 6. We first compute all critical points of the function f(z,y) = z* +
2xy* — 4zy?. We have Vf =< 2z + 2y* — 4y, 8zy® — 8zy >. Thus we need to
solve the system of two equations: 2z + 2y* — 4y% = 0, 8zy® — 8zy = 0. The first
equation can be written as = y?(2 — y?) and the second is simply zy(y* — 1) = 0.
It follows that y*(2 —y?)y(y* — 1) = 0, which means that y = 0, or > = 2, or y* = 1.
We have then five possibilities y = —/2, —1,0,1,v/2. From the first equation we
compute the corresponding values of z: 0,1,0,1,0. Thus the only critical points of
f are (0,—+/2), (1,—1), (0,0), (1,1), (0,4/2).

For each critical point (a,b) we need to compute the quantities

0*f 0*f 0*f
A== B = = —= A= AC — B
55 (@0).B = 5-(0,),C = 55(a,h), A = AC
If A>0and A > 0 then f has a local minimum at (a,b). If A > 0 and A < 0 then

f has a local maximum at (a,b). If A < 0 then (a,b) is a saddle point. When A =0

further investigation is necessary to determine the type of the critical point.

Note that for f = 2% + 2zy* — 4xy® we have
o f o f o0 f
=2 = 8y> — 8y, —> = 8z(3y* — 1).
Now it is easy to see that for the points (0, —+/2) and (0,v/2) we have A =
—128 < 0, so these are saddle points.
For the points (1,—1) and (1,1) we have A = 32 and A =2 > 0, so f has a local

minimum at (1, —1) and at (1,1).

Finally, for (0,0) we get A = 0. To determine what type of critical point is (0, 0)
note that, when (0, 0) is approached along the line y = 0, our function f(z,0) = z2
assumes positive values. Thus f assumes positive values in every neighborhood of
(0,0). On the other hand, when (0, 0) is approached along the curve z = 4y* — 3y*,

our function

flz,y) = z(z +2y" — 4%) = (4 = 3y*) (—y") = —°(4 — 3y°)

is negative for all y € (0,2/v/3). Thus f also assumes negative values in every
neighborhood of (0,0). This shows that (0,0) is a saddle point.
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Problem 7. Consider two surfaces f(z,y,2) = 0 and g(z,y,2) = 0 and let (a, b, c)
be a common point of these surfaces. If the gradients Vf(a,b,c) and Vg(a,b,c)
are not parallel, then near the point (a,b,c) the surfaces intersect along a smooth
curve (this is a version of Implicit Function Theorem) and the tangent line to this
curve at the point (a,b,c) is simply the line of intersection of the tangent planes
to both surfaces at (a, b, c). The normal vectors to these planes are V f(a, b, c) and
Vyg(a,b,c). The vector Vf(a,b,c) x Vg(a,b,c) is orthogonal to both Vf(a,b,c)
and Vg(a,b,c), so it is parallel to both tangent planes, hence also to the line of
intersection. Thus this vector is tangent to the curve of intersection at the point
(a,b,c)

In our case, f(z,y,z) = z*+y*+2*—3 and g(z,y,2) = z+y— 2z and the point
is (1,1,1). Thus Vf(1,1,1) =< 4,4,4 > and Vg(1,1,1) =< 1,1, -2 >. Tt follows
that the vector < 4,4,4 > x < 1,1,—-2 >=< —12,12,0 > is tangent to the curve of

intersection at (1,1,1).

Problem 8. The curve z2 + 3y*> = ¢ can be parameterized by z(t) = (cost)/+/c,
y(t) = (sint)/v/3c. Note that

Oz i Oy cost  z(t)
a(t) = (—sint)/vc = —\/gy(t) and a(t) — ﬁ _ %

In order to show that the function f is constant on the curve z? + 3y? = c it suffices

to show that the function g(t) = f(z(t),y(t)) is constant. By the chain rule,

5/ = 52 @(0),5(0) 570 + 5 (alt), () 5 (1) =
2 w0000 (e + 2 0,500 2 =
1 of

V3

It follows that ¢ is indeed constant.

s (c0F @000 - 505 w0.00)) ~0

It may seem that our solution heavily depends on the fact that an explicit
parametrization of the curve 22 4+ 3y? = c is known. But this is not the case. Let
(z(t),y(t)) be an arbitrary parametrization of the curve, so that z%(¢) + 3y*(t) = c.

Differentiation yields

ox Jy
2—(t)x(t —()y(t) =
2 () + 622 (1)y(t) = 0
. oz, . Oy
This means that the vectors < —(t), = (¢f) > and < z(t),3y(t) > are orthogonal.

ot " ot

The equality



means that the vectors < z(t),3y(t) > and < 8—f(x(t),y(t)), g—f(x(t),y(t)) > are

ox
ox, . Oy of of

parallel. It follows that the vectors < a(t), E(t) > and < %(x(t), y(t)), a—y(a:(t), y(t)) >

are orthogonal, i.e.
of Ox of oy,
As we have seen, this equality means that the derivative of the function g(t) =

f(z(t),y(t)) is 0, i.e. g(t) is constant. Thus the function f is constant on the curve
2+ 3y? =c.



