Quizzes for Math 323

QUIZ 1. a) Find $|\mathbf{a}|$, |-2b|, $|\mathbf{a}-\mathbf{b}|$, $3\mathbf{a}-2\mathbf{b}$, where $\mathbf{a}=<3,4>$ and $\mathbf{b}=<-4,3>$.

b) Find a vector of length 5 with the same direction as $7\mathbf{i} - 3\mathbf{j}$.

QUIZ 2. a) Let $\mathbf{v} = <1, \sqrt{2}, 1>$ and w=<1,0,1>. Compute $\mathbf{v} \cdot \mathbf{w}, \mathbf{v} \times \mathbf{w}$ and the angle between \mathbf{v} and \mathbf{w} . What is the area of the parallelogram determined by \mathbf{v} and \mathbf{w} ?

b) Compute $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$. What is the volume of the parallelepiped determined by vectors <1,0,1>,<0,1,1> and <1,1,0>?

QUIZ 3. a) Find equation of the plane passing through point P(3, -5, 1) and orthogonal to $\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$.

b) Find parametric and symmetric equations of the line through (1, -1, 2) and (3, 2, -1).

QUIZ 4. a) Find the velocity, speed, acceleration and the unit tangent vector of the curve $\mathbf{r}(t) = <\sin t, \cos t, t^2/2 >$. Find the curvature of this curve at the point $\mathbf{r}(0)$.

b) What does it mean that the parametrization $\mathbf{r}(t)$ is arc-length (natural)?

QUIZ 5. a) Use spherical coordinates to compute $\lim_{(x,y,z)\to(0,0,0)} \frac{x^3+y^3}{x^2+y^2+z^2}$.

b) Explain why $\lim (x, y, z) \to (0, 0, 0) \frac{x^2 + xy + z^2}{x^2 + y^2 + z^2}$ does not exist.

QUIZ 6. a) Using the definition, compute the partial derivatives at (0,0) of the

1

function

$$f(x,y) = (\sqrt[3]{x} + \sqrt[3]{y})^3.$$

b) Find critical points of $f(x,y) = x^2 + xy - y^2 + 1$.

QUIZ 7. a) Find the distance from (0,0,0) to the plane 2x + 3y - z = 3;

b) Let
$$w = x^2 + yz + xy$$
, $x = \sin t$, $y = \cos t$, $z = e^t$. Compute $\frac{dw}{dt}(0)$.

QUIZ 8. a) Find equation of the plane tangent to the surface

$$x^3 + y^3 + x^3 - xy - yz - xz = 0$$

at the point (1, 1, 1).

b) Find minimum and maximum of the function f(x,y) = x + y subject to the condition $x^2 + xy + y^2 = 3$.

QUIZ 9. Compute the integral $\int \int_R xydA$, where R is the triangle with vertices (0,0), (1,0), (1,2).

QUIZ 10. Find the area of the part of the surface $z = 9 - x^2 - y^2$ above the plane z = 5.

QUIZ 11. a) Compute $\int_C y ds$, where C is the semicircle $x^2 + y^2 = 1$, $y \ge 0$.

b) Find a potential for the vector field $F(x,y) = \langle e^y, xe^y \rangle$.

QUIZ 12. a) State Green's Theorem.

b) Compute

$$\oint_C (x+y^2) \mathrm{d}x + (x^2+y) \mathrm{d}y,$$

where C is the boundary of the square with vertices $(\pm 1, \pm 1)$.