
Solutions to Exam I

Problem 1. a) The length of the vector v = 2i − 3j + k equals

|v| =
√

22 + (−3)2 + 12 =
√

14.

b) The vertices are A(0, 0), B(0, 3 +
√

3), C(3,
√

3). Thus
−→
AB =< 0, 3 +

√
3 >,

−→
AC =< 3,

√
3 >. It follows that |−→AB| =

√

02 + (3 +
√

3)2 = 3 +
√

3, |−→AC| =
√

32 + (
√

3)2 =
√

12 and

cosA =

−→
AB · −→AC

|−→AB||−→AC|
=

(3 +
√

3)
√

3

(3 +
√

3)
√

12
= 1/2,

i.e. ∡A = π/3.

Similarly,
−→
BA =< 0,−3 −

√
3 >,

−−→
BC =< 3,−3 >. It follows that |−→BA| =

√

02 + (−3 −
√

3)2 = 3 +
√

3, |−−→BC| =
√

32 + (−3)2 = 3
√

2 and

cosB =

−→
BA · −−→BC

|−→BA||−−→BC|
=

(−3 −
√

3)(−3)

(3 +
√

3)3
√

2
= 1/

√
2 =

√
2/2,

i.e. ∡B = π/4.

Since the sum of all three angles in a triangle equals π, we get ∡C = π − π/3 −
π/4 = 5π/12.

c) Note that vectors < a, b > and < b,−a > are always orthogonal. Thus < 4,−3 >

is orthogonal to < 3, 4 >. Since | < 4,−3 > | = 5, the vector < 4/5,−3/5 > is a

unit vector orthogonal to < 3, 4 >.

d) Let a =< 1, 0, 1 > and b =< 1, 1, 0 >. We are looking for vectors u, w such

that u is parallel to a, w is orthogonal to a and b = u + w. Since u is parallel to
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a, we may write u = ta for some scalar t. Taking the dot product of both sides of

the equality b = ta + w with a we get

b · a = ta · a + w · a = ta · a

(since w · a = 0). Thus t = b · a/a · a = 1/2, i.e. u = a/2 =< 1/2, 0, 1/2 >. Finally,

w = b− u =< 1/2, 1,−1/2 >.

Problem 2. a) (2i + j − k) × (i − 2j + 3k) =< 2, 1,−1 > × < 1,−2, 3 >=

< 1 · 3− (−1)(−2),−(2 · 3− (−1) · 1, 2 · (−2)− 1 · 1 >=< 1,−7,−5 >. Alternatively,

you could use the fact that the cross product is distributive with respect to addition.

b)

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

1 2 1

1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

∣

2 1

1 2

∣

∣

∣

∣

∣

− 1 ·
∣

∣

∣

∣

∣

1 1

1 2

∣

∣

∣

∣

∣

+ 1 ·
∣

∣

∣

∣

∣

1 2

1 1

∣

∣

∣

∣

∣

= 3 − 1 + (−1) = 1.

c) The volume of the parallelepiped determined by vectors u, v, w equals |u·(v×w)|.
For u =< 0, 0, 1 >, v =< 1, 0, 1 >, w =< 1, 1, 1 > we have v × w =< −1, 0, 1 >

and u · (v × w) = 1, so the volume equals 1 .

Alternatively, the volume of the parallelepiped is the absolute value of the determi-

nant
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∣
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= 1.

d) The area of a triangle with vertices A, B, C equals half of the area of the

parallelogram determined by the vectors
−→
AB and

−→
AC, so it is equal to |−→AB×−→

AC|/2.

In the problem, A(0, 0, 0), B(1, 0, 1), C(1, 1, 1), so
−→
AB =< 1, 0, 1 >,

−→
AC =< 1, 1, 1 >

and the area equals

| < 1, 0, 1 > × < 1, 1, 1 > |/2 = | < −1, 0, 1 > |/2 =
√

2/2.

Problem 3. a) x2 + y2 + z2 = x − y + z may be written as

(x − 1/2)2 + (y + 1/2)2 + (z − 1/2)2 = 3/4

so this equation describes the sphere with center (1/2,−1/2, 1/2) and radius
√

3/2.
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b) Adding the equations 2x − y − z = 0 and x − 2y + z = 0 yields 3x − 3y = 0, i.e.

x = y. Thus z = 2x− y = 2x−x = x, i.e. x = y = z. It follows that the parametric

equation is x = t, y = t, z = t and the symmetric equation is x = y = z.

Alternatively, first find two distinct points belonging to both planes. For example,

A(0, 0, 0) and B(1, 1, 1) work. The line of intesection is the line passing through A

and parallel to the vector
−→
AB =< 1, 1, 1 >. It follows that the parametric equation

is x = t, y = t, z = t and the symmetric equation is x = y = z.

c) The plane containing points A,B,C is orthogonal to a vector orthogonal to both
−→
AB and

−→
AC, i.e. it is orthogonal to

−→
AB×−→

AC. In the problem, A(1, 0, 1), B(0, 1, 1),

C(1, 1, 0). Thus
−→
AB × −→

AC =< −1, 1, 0 > × < 0, 1,−1 >=< −1,−1,−1 >. Thus

we want an equation of the plane passing through (1, 0, 1) and orthogonal to

< −1,−1,−1 >, which is −(x − 1) − y − (z − 1) = 0, i.e. x + y + z = 2.

Problem 4. a) The curvature of a circle of radius R is 1/R.

b) We have r(t) =< 2t − sin 2t,− cos 2t, 4 sin t >.

The velocity v(t) = r′(t) =< 2 − 2 cos 2t, 2 sin 2t, 4 cos t >.

Thus v(π/2) =< 4, 0, 0 >.

The speed v(π/2) = 4

(We do not need a general formula for speed but it can be computed as follows

v(t) = |v(t)| =
√

(2 − 2 cos 2t)2 + (2 sin 2t)2 + (4 cos t)2 =

√

4 − 8 cos 2t + 4 cos2 2t + 4 sin2 2t + 16 cos2 t =

√

4 + 4(cos2 2t + sin2 2t) − 8(2 cos2 t − 1) + 16 cos2 t =
√

4 + 4 + 8 = 4.

We used the identity cos 2t = 2 cos2 t − 1.).

The acceleration a(t) = v′(t) =< 4 sin 2t, 4 cos 2t,−4 sin t > so a(π/2) =< 0,−4,−4 >.

The unit tangent vector T(π/2) = v(π/2t)/v(π/2) =< 1, 0, 0 >.

(In general, T(t) = v(t)/v(t) =< (1− cos 2t)/2, sin 2t/2, cos t >, but we do not need

it.).

The curvature k(π/2) = |v(π/2) × a(π/2)|/v3(π/2) =

| < 4, 0, 0 > × < 0,−4,−4 > |/43 = | < 0, 16,−16 > |/43 =
√

2/4.
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(The computation of k(t) in general from the formula k(t) = |v(t)×a(t)|/v3(t) is a bit

complicated and requires some trigonometric identities. But recall that |v(t)×a(t)|
is the area of the parallelogram determined by v(t) and |a(t)|. Since the speed

is constant, the velocity and acceleration are orthogonal, so the parallelogram is a

rectangle and therefore its area is |v(t)||a(t)| = 4
√

16 + 16 sin2 t = 16
√

1 + sin2 t.

Thus k(t) =
√

1 + sin2 t/4.

Another method is to use the formula k(t) = |T′(t)|/v(t) =
√

1 + sin2 t/4.).

The unit normal vector is computed from the formula

a(t) = k(t)v(t)2N(t) +
v(t) · a(t)

v(t)
T(t).

For t = π/2 we get v(π/2) · a(π/2) = 0 and

< 0,−4,−4 >=

√
2

2
42N(π/2)

so N(π/2) =< 0,−
√

2/2,
√

2/2 >.

(We have seen that the acceleration and velocity are orthogonal for all t, so

v(t) · a(t) = 0 and a(t) = k(t)v(t)2N(t), i.e.

N(t) =
a(t)

k(t)v(t)2
=<

sin 2t√
1 + sin2 t

,
cos 2t√

1 + sin2 t
,

− sin t√
1 + sin2 t

> .

Alternatively, N(t) can be computed from the formula

N(t) =
T′(t)

|T′(t)| =
< sin 2t, cos 2t,− sin t >√
sin2 2t + cos2 2t + sin2 t

=<
sin 2t√

1 + sin2 t
,

cos 2t√
1 + sin2 t

,
− sin t√
1 + sin2 t

> .)

c) The velocity of the parametric curve r(t) =< t sin t, t cos t, 2
√

2

3
t3/2 > (note that

it is defined only for t ≥ 0) equals

v(t) =< sin t + t cos t, cos t − t sin t,
√

2t > .

The speed v(t) =
√

(sin t + t cos t)2 + (cos t − t sin t)2 + (
√

2t)2 =

√

sin2 t + 2t sin t cos t + t2 cos2 t + cos2 t − 2t sin t cos t + t2 sin2 t + 2t =
√

1 + t2 + 2t = 1+t.

The length of the curve between r(0) and r(t) is

s(t) =

∫ t

0

v(u)du =

∫ t

0

(1 + u)du = t + t2/2.
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From the equation s = t + t2/2 we get 1 + 2s = 1 + 2t + t2 = (1 + t)2, hence

t =
√

2s + 1 − 1. The arc-length parametrization is then

r(s) =< (
√

2s + 1−1) sin(
√

2s + 1−1), (
√

2s + 1−1) cos(
√

2s + 1−1),
2
√

2

3
(
√

2s + 1−1)3/2 > .

d) A particle moves in the space with acceleration a(t) =< 2, 6t, 12t2 >. The velocity

of the particle equals

v(t) =

∫

a(t)dt =< 2t + c1, 3t
2 + c2, 4t

3 + c3 >

for some constants c1, c2, c3. The condition v(1) =< 3, 4, 5 > implies that c1 = c2 =

c3 = 1, i.e. v(t) =< 2t + 1, 3t2 + 1, 4t3 + 1 >. The position of the particle equals

r(t) =

∫

v(t)dt =< t2 + t + d1, t
3 + t + d2, t

4 + t + d3 > .

The condition r(1) =< 3, 2, 2 > implies that d1 = 1, d2 = d3 = 0, i.e.

r(t) =< t2 + t+1, t3 + t, t4 + t >. Thus, at t = 0 the particle is at the point (1, 0, 0).

Problem 5. a) The cylindrical coordinates of the point (1, 1,
√

6) are (r, θ, z),

where r2 = 12 + 12 = 2, tan θ = 1/1 = 1, z =
√

6. Thus θ = π/4 and the cylindrical

coordinates are (
√

2, π/4,
√

6).

The spherical coordinates of this point are (ρ, φ, θ), where θ = π/4 is the same

as for the cylindrical coordinates, ρ2 = 12 + 12 +
√

6
2

= 8 and cosφ =
√

6/ρ =
√

6/
√

8 =
√

3/2. Thus φ = π/6 and the spherical coordinates are (2
√

2, π/6, π/4).

b) The point whose cylindrical coordinates are (1, π/6, 1) has Cartesian coordinates

(cos π/6, sinπ/6, 1). The spherical coordinates are (ρ, φ, θ), where θ = π/6 (same

as for cylindrical coordinates), ρ2 = cos2 π/6 + sin2 π/6 + 1 = 2 and cosφ = 1/ρ =

1/
√

2 =
√

2/2. Thus φ = π/4 and the spherical coordinates are (
√

2, π/4, π/6).

c) A plane curve in polar coordinates has equation r = cos θ. Since x = r cos θ =

cos2 θ, y = r sin θ = cos θ sin θ, the curve has parametric equation r(θ) =< cos2 θ, sin θ cos θ >

in Cartesian coordinates. The velocity is v(θ) =< −2 sin θ cos θ, cos2 θ − sin2 θ >.

The speed v(θ) =
√

(−2 sin θ cos θ)2 + (cos2 θ − sin2 θ)2 =
√

(cos2 θ + sin2 θ)2 = 1.

The acceleration a(θ) =< −2(cos2 θ−sin2 θ),−4 sin θ cos θ >. Since the parametriza-

tion r(θ) is a natural (arc-length) parametrization, we have T(θ) = v(θ) and
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k(θ) = |T′(θ)| = |a(θ)|. Thus

k(θ) =
√

[(−2)(cos2 θ − sin2 θ)]2 + (−4 sin θ cos θ)2 =
√

4(cos2 θ + sin2 θ)2 = 2.

Remark. The computation simplify significantly when the formulas sin 2x =

2 sin x cosx, cos 2x = cos2 x − sin2 x are used.

Remark. One could avoid the computations by observing that

r(θ) =< (1 − cos 2θ)/2, sin 2θ/2 >=< 1/2, 0 > +1/2 < − cos 2θ, sin 2θ >

i.e. the curve is a circle centered at (1/2, 0), with radius 1/2. The curvature of a

circle with radius r is 1/r, so k(θ) = 2.

Problem 6. a) The intersection with the XY plane is a curve with equation

y2 − 4x2 = 100 so it is a hiperbola.

b) The intersection with the XZ plane has equation −4x2 − 25z2 = 100. Since the

left hand side is never positive, the equation describes the empty set.

c) The intersection with the Y Z plane is a curve with equation y2 − 25z2 = 100 so

it is a hiperbola.

The surface is a hyperboloid of 2 sheets.

**************************************************************************

**************************************************************************

Problem 7. Suppose that the acceleration and velocity of a smooth parametric

curve r(t) are always orthogonal. Let T(t) be the unit tangent vector. Thus v(t) =

v(t)T(t). We see that a(t) = v′(t) = v′(t)T(t) + v(t)T′(t). Differentiation of the

equality T(t) · T(t) = 1 shows that T(t) · T′(t) = 0. Thus

0 = a(t) · v(t) = (v′(t)T(t) + v(t)T′(t)) · (v(t)T(t)) = v′(t)v(t).

Since v(t) is never 0, we conclude that v′(t) = 0 for all t, i.e. v(t) is constant.
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