Solutions to Exam I

Problem 1. a) The length of the vector v = 2i — 3j + k equals

Iv| = /22 + (=3)2 + 12 = V14.

b) The vertices are A(0,0), B(0,3 + v/3), C(3,v/3). Thus AB =< 0,3 + /3 >,
— — —
AC =< 3,v/3 >. It follows that |AB| = \/O2+(3+\/§)2 = 3+3, |AC| =

32+ (v3)2 = V12 and

cos A = AB - AC _ BHVI)V3 =1/2
IAB||AC|  (3+V3)V12 ’
ie. £A=m/3.
Simﬂarly, BA =< 0,—3 — f >, BC =< 3,—3 >. It follows that |B—1)4| =
VO + (-3 - V3)2 =3+ VB, [BC| = /F 1 (3] = 32 and
—_— —
BA-BC  (-3-VB)(-3)
cos B = = =1/V2=12/2,
IBA|IBC|  (3+/3)3V2
ie. AB=m/4.

Since the sum of all three angles in a triangle equals 7, we get LC' =7 — /3 —
/4 = b5r/12.
c¢) Note that vectors < a,b > and < b, —a > are always orthogonal. Thus < 4, -3 >

is orthogonal to < 3,4 >. Since | < 4,—3 > | = 5, the vector < 4/5,—-3/5 > is a
unit vector orthogonal to < 3,4 >.

d) Let a =< 1,0,1 > and b =< 1,1,0 >. We are looking for vectors u, w such

that u is parallel to a, w is orthogonal to a and b = u + w. Since u is parallel to



a, we may write u = ta for some scalar t. Taking the dot product of both sides of

the equality b = ta + w with a we get
b-a=ta-a+w-a=ta-a

(sincew-a=0). Thust =b-a/a-a=1/2,ie. u=a/2=<1/2,0,1/2 >. Finally,
w=b-u=<1/2,1,-1/2>.

Problem 2. a) (2i+j—k) x (1—2j+3k) =< 2,1,—1 > x < 1,-2,3 >=
<1:3—(=1)(=2),—(2:3=(=1)-1,2-(=2)—1-1 >=< 1,—7,—5 >. Alternatively,

you could use the fact that the cross product is distributive with respect to addition.
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c¢) The volume of the parallelepiped determined by vectors u, v, w equals |u-(vxw)].
Foru =< 0,0,1 >, v=<1,0,1> w=<1,1,1 > we have vxw =< —1,0,1 >

and u- (v x w) = 1, so the volume equals 1 .

Alternatively, the volume of the parallelepiped is the absolute value of the determi-

nant
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d) The area of a triangle with vertices A, B, C' equals half of the area of the
— — —_— —

parallelogram determined by the vectors AB and AC', so it is equal to |AB x AC'|/2.

In the problem, A(0,0,0), B(1,0,1), C(1,1,1), s0 AB =< 1,0,1 >, AC =< 1,1,1 >

and the area equals

| <1,0,1>x<1,1,1>]/2=|<—-1,0,1>|/2=+2/2.

Problem 3. a) 22 + y*> + 2% =  — y + 2 may be written as
(x—1/2)%+ (y+1/2)* + (2 — 1/2)* = 3/4

so this equation describes the sphere with center (1/2, —1/2,1/2) and radius v/3/2.



b) Adding the equations 2x —y — z = 0 and = — 2y + z = 0 yields 3z — 3y = 0, i.e.
r=y. Thus 2 =20 —y =2xr—x =z, i.e. x =y = z. It follows that the parametric

equation is x = t,y = t, z =t and the symmetric equation is x =y = 2.

Alternatively, first find two distinct points belonging to both planes. For example,
A(0,0,0) and B(1,1,1) work. The line of intesection is the line passing through A
and parallel to the vector A—B> =< 1,1,1 >. It follows that the parametric equation

isx =ty =1,z =1t and the symmetric equation is z = y = 2.

c¢) The plane containing points A, B, C' is orthogonal to a vector orthogonal to both
— — —_— —

AB and AC, i.e. it is orthogonal to AB x AC'. In the problem, A(1,0,1), B(0,1,1),
C(1,1,0). Thus AB x AC =< —1,1,0 > x < 0,1, -1 >=< —1,—1,—1 >. Thus
we want an equation of the plane passing through (1,0,1) and orthogonal to

< —1,—-1,-1> whichis —(z — 1) —y—(2—1)=0,ie. z+y+2=2.
Problem 4. a) The curvature of a circle of radius R is 1/R.

b) We have r(t) =< 2t — sin 2t, — cos 2t,4sint >.

The velocity v(t) = r'(t) =< 2 — 2 cos 2t, 2sin 2t,4 cost >.

Thus v(7/2) =< 4,0,0 >.

The speed v(r/2) =4

(We do not need a general formula for speed but it can be computed as follows
v(t) = [v(t)] = /(2 — 2cos 2t)2 + (2sin 2t)% + (4 cost)? =

\/4—80052t—|—4cosz2t—|—4sin22t+16cos2t =

\/4 + 4(cos? 2t + sin® 2t) — 8(2cos2t — 1) + 16cos?t = V4 + 4 + 8 = 4.
We used the identity cos 2t = 2 cos? t — 1.).

The acceleration a(t) = v/(t) =< 4sin 2t,4 cos 2t, —4sint > so a(n/2) =< 0, —4, —4 >.
The unit tangent vector T'(7/2) = v(7/2t)/v(7/2) =< 1,0,0 >.

(In general, T'(t) = v(t)/v(t) =< (1 —cos2t)/2,sin 2t/2,cost >, but we do not need
it.).

The curvature k(7 /2) = |v(7/2) x a(n/2)|/v*(7/2) =
| <4,0,0> x <0,—4,—4> /4> =|<0,16,—16 > |/43 = \/2/4.



(The computation of k(#) in general from the formula k(t) = |v(t) xa(t)|/v3(t) is a bit
complicated and requires some trigonometric identities. But recall that |v(¢) x a(t)]
is the area of the parallelogram determined by v(¢) and |a(t)|. Since the speed
is constant, the velocity and acceleration are orthogonal, so the parallelogram is a
rectangle and therefore its area is |v(t)||a(t)] = 4V16 + 16sin>t = 16v/1 + sin’t.
Thus k(t) = V1 +sin’t/4.

Another method is to use the formula k(t) = |T'(t)|/v(t) = V1 + sin®t/4.).

The unit normal vector is computed from the formula
t)-a(t
at) = k(B(e)N() + Y20 py.

For t = m/2 we get v(7/2) - a(w/2) = 0 and

5
< 0,4, —4 >= %42N(7r/2)

so N(7/2) =< 0, —v/2/2,1/2/2 >.
(We have seen that the acceleration and velocity are orthogonal for all ¢, so
v(t) -a(t) =0 and a(t) = k(t)v(t)*N(t), i.e.

a(t) __ sin 2t cos 2t —sint -
k(v()? V14sin’t V1+sin®t V1 +sin’t

Alternatively, N(¢) can be computed from the formula

N(t) =

N(t) = T'(t)  <sin2t,cos2t, —sint > __ sin 2t cos 2t —sint
T'(t)|  V/sin®2t + cos? 2t + sin’ t V1+sin?t V1+sin’t V1 +sin®¢

c¢) The velocity of the parametric curve r(t) =< tsint,tcost, 2—\:,)/5153/2 > (note that

it is defined only for ¢t > 0) equals

v(t) =< sint + tcost, cost — tsint, V2t > .

The speed v(t) = \/(sint +tcost)? + (cost — tsint)? + (v/2t)2 =

\/sin2t+2tsintcost+t2coszt+coszt— 2tsintcost + t2sin’t + 2t = V1 + 12 + 2t = 1+¢.

The length of the curve between r(0) and r(¢) is
¢ t
s(t) = / v(u)du = / (14 u)du =t +1%/2.
0 0
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From the equation s = ¢ + t%/2 we get 1 + 2s = 1+ 2t +t* = (1 + t)?, hence
t =+/2s+ 1 — 1. The arc-length parametrization is then

22
r(s) =< (V2s+1-1)sin(v2s + 1-1), (V2s + 1—1) cos(v2s + 1—1), T\/_(VZS +1-1)32 >
d) A particle moves in the space with acceleration a(t) =< 2,6t,12t*> >. The velocity

of the particle equals
v(t) = /a(t)dt =< 2t 41, 3t° + ¢, 4% 4¢3 >

for some constants ¢y, ¢o, c3. The condition v(1) =< 3,4,5 > implies that ¢; = c3 =

c3=1,ie v(t) =< 2t+1,3t> + 1,4t> + 1 >. The position of the particle equals
r(t) = /v(t)dt =<t’+t+d, P +t+do,t* +t+d3>.

The condition r(1) =< 3,2,2 > implies that d; = 1, dy = d3 = 0, i.e.
r(t) =<t +t+ 1,3+t t* +t >. Thus, at t = 0 the particle is at the point (1,0,0).

Problem 5. a) The cylindrical coordinates of the point (1,1,v/6) are (r,0, z),
where 72 = 12412 =2, tanf = 1/1 = 1, z = /6. Thus 6 = 7/4 and the cylindrical
coordinates are (v/2,7/4,/6).

The spherical coordinates of this point are (p, ¢,0), where § = 7/4 is the same
as for the cylindrical coordinates, p* = 12 + 1% + \@2 = 8 and cos¢ = \/6/ p =
V6/v/8 =+/3/2. Thus ¢ = 7/6 and the spherical coordinates are (2v/2,7/6,7/4).

b) The point whose cylindrical coordinates are (1,7/6,1) has Cartesian coordinates
(cosm/6,sinm/6,1). The spherical coordinates are (p, ¢,0), where § = 7/6 (same
as for cylindrical coordinates), p? = cos? /6 + sin®7/6 + 1 =2 and cos¢ = 1/p =
1/v/2 =+/2/2. Thus ¢ = 7/4 and the spherical coordinates are (v/2,7/4,7/6).

¢) A plane curve in polar coordinates has equation r = cosf. Since z = rcosf =
cos? §, y = rsin @ = cos @ sin ), the curve has parametric equation r() =< cos? ,sin @ cos § >
in Cartesian coordinates. The velocity is v(f) =< —2sin# cosf, cos? — sin® 6 >.
The speed v(f) = v/(—2sinf cosd)? + (cos2 — sin )2 = /(cos2 0 + sin? )2 = 1.

The acceleration a(f) =< —2(cos? §—sin® §), —4sin § cos § >. Since the parametriza-

tion r(f) is a natural (arc-length) parametrization, we have T(0) = v(f) and



k(0) = |T'(0)] = |a(6)|. Thus

k(9) = \/[(—2)(0032 0 — sin? 0))2 + (—4sinf cos )2 = \/4(C082 0 + sin” 0)2 = 2.

Remark. The computation simplify significantly when the formulas sin 2z =

2

2sin z cos x, cos 2z = cos® x — sin® x are used.

Remark. One could avoid the computations by observing that
r(f) =< (1 —cos20)/2,sin20/2 >=<1/2,0 > +1/2 < — cos 26, sin 20 >

i.e. the curve is a circle centered at (1/2,0), with radius 1/2. The curvature of a

circle with radius r is 1/7, so k(0) = 2.

Problem 6. a) The intersection with the XY plane is a curve with equation

y? — 42? = 100 so it is a hiperbola.

b) The intersection with the X Z plane has equation —4x? — 2522 = 100. Since the

left hand side is never positive, the equation describes the empty set.

c) The intersection with the Y'Z plane is a curve with equation y? — 252% = 100 so
it is a hiperbola.

The surface is a hyperboloid of 2 sheets.
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Problem 7. Suppose that the acceleration and velocity of a smooth parametric
curve r(t) are always orthogonal. Let T(¢) be the unit tangent vector. Thus v(t) =
v(t)T(t). We see that a(t) = v/(t) = o'(t)T(¢t) + v(t)T'(¢). Differentiation of the
equality T(t) - T(t) = 1 shows that T(¢) - T'(¢) = 0. Thus

0=a(t) v(t) = (' (O)T({) +v(®)T() - ()T (t)) = o' ()v(t).

Since v(t) is never 0, we conclude that v'(t) = 0 for all ¢, i.e. v(t) is constant.



