
Solutions to Exam II

Problem 1. a) To see that the limit lim
(x,y)→(0,0)

x2 + y3

x2 + y2
does not exist let us approach

(0, 0) along the line y = kx. Then the limit will take form

lim
x→0

x2 + k3x3

x2 + k2x2
= 1/(1 + k2).

For k = 0 we get limit 1 and for k = 1 we get limit 1/2. Since these limits have

different values, the limit lim
(x,y)→(0,0)

x2 + y3

x2 + y2
does not exist.

b) Let f(x, y, z) =
x2y

x2 + y2 + z2
for (x, y, z) 6= (0, 0, 0) and f(0, 0, 0) = a. Since both

the numerator and denominator are continuous functions, this function is continuous

at all points except possibly the points where the denominator vanishes, i.e. the

origin. It is continuous at the origin iff lim
(x,y,z)→(0,0,0)

x2y

x2 + y2 + z2
= a. In order to

compute the limit we use spherical coordinates x = ρ sin φ cos θ, y = ρ sin φ sin θ,

z = ρ cos θ. Thus

lim
(x,y,z)→(0,0,0)

x2y

x2 + y2 + z2
= lim

ρ→0

ρ3 sin3 φ cos2 θ sin2 θ

ρ2
= lim

ρ→0
ρ sin3 φ cos2 θ sin2 θ = 0

since ρ approaches 0 and sin3 φ cos2 θ sin2 θ is bounded between −1 and 1. Thus the

function is continuous iff a = 0.

Problem 2. a) First we compute the partial derivatives of g:

∂g

∂x
(x, y) = 4x3 + 4y,

∂g

∂y
(x, y) = 4x + 4y.

Thus (x, y) is a critical point of g iff 4x3 + 4y = 0 and 4x + 4y. In other words,

y = −x and x3−x = 0. The second equation holds iff x = 0, or x = −1, or x = 1 and

then y = 0, y = 1, y = −1 respectively. Thus the critical points are (0, 0), (−1, 1),

(1,−1). We know that if a function attains its smallest value in an interior point of

its domain then this point must be a critical point. Thus, the smallest value of g is

attained at some of its critical points. Since g(0, 0) = −1, g(−1, 1) = −2 = g(1,−1),
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we see that the smallest value if g is −2 and it is attained at two points: (−1, 1)

and (1,−1).

b) Recall that if a function f has continuous second order mixed partial derivatives,

then they must be equal. If a function f(x, y) such that

∂f

∂x
(x, y) = sin x − cos y and

∂f

∂y
(x, y) = x cos y

existed, its mixed second order partial derivatives would be

∂2f

∂y∂x
(x, y) = sin y and

∂2f

∂x∂y
(x, y) = cos y.

Thus f would have continuous second order mixed partial derivatives which are

different, a contradiction. It follows that such function f does not exist.

Problem 3. a) The surface is defined by f(x, y, z) = 0, where

f(x, y, z) = x2 + y2 + z2 − xyz − 2.

Thus ∇f =< 2x−yz, 2y−xz, 2z−xy >, so ∇f(1, 1, 0) =< 2, 2,−1 >. The equation

of the plane tangent to this surface at the point (1, 1, 0) is then

2(x − 1) + 2(y − 1) − z = 0 i.e. 2x + 2y − z = 4.

b) Consider two surfaces f(x, y, z) = 0 and g(x, y, z) = 0 and let (a, b, c) be a

common point of these surfaces. If the gradients ∇f(a, b, c) and ∇g(a, b, c) are not

parallel, then near the point (a, b, c) the surfaces intersect along a smooth curve (this

is a version of Implicit Function Theorem) and the tangent line to this curve at the

point (a, b, c) is simply the line of intersection of the tangent planes to both surfaces

at (a, b, c). The normal vectors to these planes are ∇f(a, b, c) and ∇g(a, b, c). The

vector ∇f(a, b, c)×∇g(a, b, c) is orthogonal to both ∇f(a, b, c) and ∇g(a, b, c), so it

is parallel to both tangent planes, hence also to the line of intersection. Thus this

vector is tangent to the curve of intersection at the point (a, b, c)

In our case, f(x, y, z) = x4 + y4 + z4−3 and g(x, y, z) = x+ y−2z and the point

is (1, 1, 1). Thus ∇f(1, 1, 1) =< 4, 4, 4 > and ∇g(1, 1, 1) =< 1, 1,−2 >. It follows

that the vector < 4, 4, 4 > × < 1, 1,−2 >=< −12, 12, 0 > is tangent to the curve of

intersection at (1, 1, 1). The tangent line has then parametric equation

x = 1 − 12t, y = 1 + 12t, z = 1.
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Problem 4. a) The Implicit Function Theorem implies that the surface

f(x, y, z) = x2 + y2 + z2 − xyz − 2 = 0

is a graph of a function z = g(x, y) near the point (1, 1, 0). This means that

f(x, y, g(x, y)) = 0. Differentiating this equality and applying the chain rule we

get that
∂f

∂x
(x, y, g(x, y)) +

∂f

∂z
(x, y, g(x, y))

∂g

∂x
(x, y) = 0

and
∂f

∂y
(x, y, g(x, y)) +

∂f

∂z
(x, y, g(x, y))

∂g

∂y
(x, y) = 0.

Thus
∂g

∂x
(1, 1) =

−∂f

∂x
(1, 1, 0)

∂f

∂z
(1, 1, 0)

=
−2

−1
= 2

and
∂g

∂y
(1, 1) =

−∂f

∂y
(1, 1, 0)

∂f

∂z
(1, 1, 0)

=
−2

−1
= 2

It follows that the gradient ∇g(1, 1) =< 2, 2 >.

b) Recall the Implicit Function Theorem: Let f(x1, x2, ..., xn, xn+1) be a contin-

uously differentiable function near a point (a1, ..., an+1) such that f(a1, ..., an+1) = 0

and
∂f

∂xn+1

(a1, ..., an+1) 6= 0. There exists a continuously differentiable function

g(x1, ..., xn), defined in some neighborhood U of the point (a1, ..., an), such that

near the point (a1, ..., an+1) the hyper-surface f(x1, x2, ..., xn, xn+1) = 0 coincides

with the graph of the function g(x1, ..., xn). In other words, g(a1, ..., an) = an+1

and if (x1, ..., xn+1) is sufficiently close to (a1, ..., an+1) then it satisfies the equation

f(x1, x2, ..., xn, xn+1) = 0 iff xn+1 = g(x1, ..., xn).

In our case, f(x, y, z) = x2+y2+z2−xyz−2 so we need to check that f is contin-

uously differentiable and
∂f

∂z
(1, 1, 0) 6= 0. This is indeed true, since

∂f

∂z
(1, 1, 0) = −1.

c) Let h(s, t) = F (x(s, t), y(s, t)). The chain rule tells us that

∂h

∂t
(a, b) =

∂F

∂x
(x(a, b), y(a, b))

∂x

∂t
(a, b) +

∂F

∂y
(x(a, b), y(a, b))

∂y

∂t
(a, b).

Taking (a, b) = (0, 1) we see that

∂h

∂t
(0, 1) = 3 · (−1) + 2 · 1 = −1.

Problem 5. Let f(x, y) = x2 − y2 − x2y2 . Thus ∇f =< 2x− 2xy2,−2y − 2yx2 >.

To find critical points we solve the system x − xy2 = 0, −y − yx2 = 0. The second
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equation −y(1 + x2) = 0 implies that y = 0 (since 1 + x2 is never 0). Now the first

equation tells us that also x = 0. In other words, (0, 0) is the only critical point of f .

But it is not in the interior of D, so we do not need to worry about it (this point is

on the boundary of D, so it will be considered when we investigate the boundary).

It follows that both the largest and smallest values are attained at points on the

boundary of D.

The boundary of D consists of two pieces: the interval y = 0, −1 ≤ x ≤ 1 and

the semicircle x2 + y2 = 1, y ≥ 0.

On the interval the function is f(x, 0) = x2. Thus, on this interval, f attains

largest value equal to 1 at x = −1 and x = 1 and smallest value equal to 0 at x = 0.

We can parametrize the semicircle by x = cos t, y = sin t, t ∈ [0, π]. Thus

f(x, y) = cos2 t − sin2 t − cos2 t sin2 t = h(t). We have h(0) = 1, h(π) = 1 and

h′(t) = −2 cos t sin t−2 sin t cos t+2 cos t sin3 t−2 sin t cos3 t = 2 sin t cos t(−2+sin2 t−cos2 t)

(you can simplify a bit the computations by using basic trigonometry). We see that

h′(t) = 0 iff either sin t = 0 or cos t = 0, or (−2 + sin2 t − cos2 t) = 0. The first and

last of these possibilities can not happen for t ∈ (0, π), so cos t = 0 and t = π/2.

Since h(π/2) = −1, we see that the largest value of f on the semicircle is 1 and the

smallest value equals −1.

Alternatively, on the semicircle we have y =
√

1 − x2 and our function equals

g(x) = f(x,
√

1 − x2) = x2 − (1 − x2) − x2(1 − x2) = x4 + x2 − 1, x ∈ [−1, 1]. Now

g′(x) = 4x3 − 2x = 2x(2x2 − 1) = 0 when x = 0 or x = 1/
√

2 or x = −1/
√

2. We

have g(−1) = g(1) = 1, g(0) = −1, g(1/
√

2) = g(−1/
√

2) = −1/4. Thus the largest

value of f on the semicircle is 1 and the smallest value equals −1.

Putting all the above together, we see that on D the function f has largest value

equal to 1 and smallest value equal to −1.

Problem 6. Recall that for continuously differentiable functions f(x1, ..., xn),

g(x1, ..., xn), if f attains at a point (a1, ..., an) largest (smallest) value subject to

g(x1, ..., xn) = 0 then either ∇g(a1, ..., an) = 0 or ∇f(a1, ..., an) = λ∇g(a1, ..., an)

for some (unknown) constant λ. Thus points where f attains largest (smallest)

value subject to g = 0 are either among the solutions to the system of equa-

tions g(x1, ..., xn) = 0, ∇g(x1, ..., xn) = 0 or among the solutions to the system

g(x1, ..., xn) = 0, ∇f(x1, ..., xn) = λ∇g(x1, ..., xn) (with unknowns x1, ..., xn and λ).

In order to find largest and smallest values of the function f(x, y) = x + y

subject to the condition g(x, y) = x4 +4xy +2y2 − 1 = 0 we compute ∇f =< 1, 1 >
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and ∇g =< 4x3 + 4y, 4x + 4y > (it is not hard to see that the equation g(x, y) = 0

describes a closed and bounded set, so f indeed attains its largest and smallest values

subject to g = 0). Note that in Problem 2a) we have seen that ∇g(x, y) = 0 iff (x, y)

is one of (0, 0), (−1, 1), (1,−1). None of these three points satisfies g(x, y) = 0, so

we only need to consider the second system of equations, i.e.

x4 + 4xy + 2y2 − 1 = 0, 1 = λ(4x3 + 4y), 1 = λ(4x + 4y).

The last 2 equations imply that 4x3 = 4x, i.e. x = 0, 1 or −1. For x = 0 we

get g(0, y) = 2y2 − 1 = 0, so y = −1/
√

2 or y = 1/
√

2. If x = 1 then g(1, y) =

4y + 2y2 = 0 implies that y = 0 or y = −2. Similarly, for x = −1, we have

g(−1, y) = −4y + 2y2 = 0, i.e. y = 0 or y = 2. So we have 6 points where the

largest and smallest values can be attained: (0,−1/
√

2), (0, 1/
√

2), (1, 0), (1,−2),

(−1, 0), (−1, 2). Since f(0,−1/
√

2) = −1/
√

2, f(0, 1/
√

2) = 1/
√

2, f(1, 0) = 1,

f(1,−2) = −1, f(−1, 0) = −1, f(−1, 2) = 1, we see that the largest value of f is 1

and the smallest value is −1.

Problem 7. The curve x2 + 3y2 = c can be parameterized by x(t) = (cos t)/
√

c,

y(t) = (sin t)/
√

3c. Note that

∂x

∂t
(t) = (− sin t)/

√
c = −

√
3y(t) and

∂y

∂t
(t) =

cos t√
3c

=
x(t)√

3

In order to show that the function f is constant on the curve x2 +3y2 = c it suffices

to show that the function g(t) = f(x(t), y(t)) is constant. By the chain rule,

g′(t) =
∂f

∂x
(x(t), y(t))

∂x

∂t
(t) +

∂f

∂y
(x(t), y(t))

∂y

∂t
(t) =

∂f

∂x
(x(t), y(t))(−

√
3y(t)) +

∂f

∂y
(x(t), y(t))

x(t)√
3

=

1√
3

(

x(t)
∂f

∂y
(x(t), y(t)) − 3y(t)

∂f

∂x
(x(t), y(t))

)

= 0

It follows that g is indeed constant.

It may seem that our solution heavily depends on the fact that an explicit

parametrization of the curve x2 + 3y2 = c is known. But this is not the case. Let

(x(t), y(t)) be an arbitrary parametrization of the curve, so that x2(t) + 3y2(t) = c.

Differentiation yields

2
∂x

∂t
(t)x(t) + 6

∂y

∂t
(t)y(t) = 0
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This means that the vectors <
∂x

∂t
(t),

∂y

∂t
(t) > and < x(t), 3y(t) > are orthogonal.

The equality

x(t)
∂f

∂y
(x(t), y(t)) − 3y(t)

∂f

∂x
(x(t), y(t)) = 0

means that the vectors < x(t), 3y(t) > and <
∂f

∂x
(x(t), y(t)),

∂f

∂y
(x(t), y(t)) > are

parallel. It follows that the vectors <
∂x

∂t
(t),

∂y

∂t
(t) > and <

∂f

∂x
(x(t), y(t)),

∂f

∂y
(x(t), y(t)) >

are orthogonal, i.e.

∂f

∂x
(x(t), y(t))

∂x

∂t
(t) +

∂f

∂y
(x(t), y(t))

∂y

∂t
(t) = 0.

As we have seen, this equality means that the derivative of the function g(t) =

f(x(t), y(t)) is 0, i.e. g(t) is constant. Thus the function f is constant on the curve

x2 + 3y2 = c.
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