Exam III, Math 323

April 29, 2008

Problem 1. The function $f(x, y) = x^2 + 2xy^4 - 4xy^2$ has five critical points (1, 1), (1, -1), $(0, \sqrt{2})$, (0, -sqrt2) and (0, 0). Determine the type of each of these critical points. Provide all the necessary calculatuions. (**15 points**) **Problem 2.** a) Compute $\int \int_R \frac{1}{3+x-x^2} dx dy$, where *R* is the region bounded by the parabola $y = x^2 - 2$, the line y = x + 1 and the vertical lines x = -1 and x = 2. (**10 points**)

b) Compute $\int \int \int_{T} \int_{T} 4xyz dx dy dz$, where T is the solid bounded by the parabolic cylinder $y = 1 - x^2$ and the planes y = 0, z = 1, z = 0. (10 points)

c) Compute $\int_0^1 \int_{\sqrt{y}}^1 3e^{x^3} dx dy$. Hint: reverse the order of integration. (10 points)

Problem 3. a) Compute $\int \int_{R} 2\cos(x^2 + y^2)dxdy$, where *R* is the region in the first quadrant bounded by the curve $r = \sqrt{\pi + \theta}$ (in polar coordinates). (**10 points**) b) Compute $\int \int \int_{T} 4z\sqrt{1 + (x^2 + y^2 + z^2)^2}dxdydz$, where *T* is the part of the ball $x^2 + y^2 + z^2 \leq 1$ in the first octant. Hint: The Jacobian of the spherical coordinates is $\rho^2 \sin \phi$. (**10 points**)

Problem 4. a) Compute $\int_C e^{4x^2 - y^2} ds$, where *C* is the piece of the line y = 2x which lies between x = 0 and x = 1. (10 points)

c) Compute $\int_C \mathbf{F} \cdot \mathbf{T} ds$, where C is the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$, $t \in [0, \pi]$ and **F** is the vector field $\mathbf{F}(x, y, z) = \langle -y, x, z - x^2 - y^2 \rangle$. (10 points)

Problem 5. Find the area of the surface $x = \cos u$, $y = \sin u$, z = u + v, where $0 \le u \le \pi$ and $0 \le v \le 1$. (15 points)

 The following problem is optional. You may earn extra points, but work on this problem only after you are done with the other problems

Problem 6. The change of variables $x = x(r, t, \theta) = \frac{r}{t} \cos \theta$, $y = y(r, t, \theta) = \frac{r}{t} \sin \theta$, $z = z(r, t, \theta) = r^2$ transforms the box $B = \{(r, t, \theta) : 1 \le r \le 2, 1 \le t \le 2, 0 \le \theta \le 2\pi\}$ onto the solid *R* between the paraboloids $z = x^2 + y^2$, $z = 4(x^2 + y^2)$ and the planes z = 1, z = 4. Express the volume of *R* as a triple integral in the variables r, t, θ and evaluate it. (8 points)