Solutions to Exam II1

Solution to Problem 1. We first compute all critical points of the function
f(x,y) = 2? + 2zy* — 42y* (even though they are given to us in the statement of
the problem). We have Vf =< 2x + 2y* — 4y* 8xy> — 8xy >. Thus we need to
solve the system of two equations: 2z + 2y* — 4y? = 0, 8zy3 — S8xy = 0. The first
equation can be written as r = y?(2 — 3?) and the second is simply zy(y* — 1) = 0.
It follows that y*(2 —y?)y(y*> — 1) = 0, which means that y = 0, or y? = 2, or y? = 1.
We have then five possibilities y = —v/2, —1,0,1,v/2. From the first equation we
compute the corresponding values of x: 0,1,0,1,0. Thus the only critical points of
f are (0,—v/2), (1,—1), (0,0), (1,1), (0,/2).

For each critical point (a,b) we need to compute the quantities
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= —>(a,b), B = b),C = ~5(a,b),A = AC — B*.
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If A>0and A >0 then f has a local minimum at (a,b). If A > 0 and A < 0 then
f has a local maximum at (a,b). If A < 0 then (a,b) is a saddle point. Note that
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for f = 22 + 2zy* — 42y* we have
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= 8y® — 8y, —= = 8z(3y* — 1).

Now it is easy to see that for the points (0, —v/2) and (0,v/2) we have A =
—128 < 0, so these are saddle points.

For the points (1, —1) and (1,1) we have A = 32 and A =2 > 0, so f has a local
minimum at (1, —1) and at (1,1).

Finally, for (0,0) we get A = 0. To determine what type of critical point is (0, 0)
note that, when (0, 0) is approached along the line y = 0, our function f(z,0) = 22
assumes positive values. Thus f assumes positive values in every neighborhood of
(0,0). On the other hand, when (0, 0) is approached along the parabola y* = x, our

function
fz,y) = z(z +2y" — 4y*) = 2(z + 22° — 4x) = 2°(=3 + 22)
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is negative for all x < 3/2. Thus f also assumes negative values in every neighbor-
hood of (0,0). This shows that (0,0) is a saddle point.
Solution to Problem 2. a) The region bounded by the parabola y = z? — 2, the

line y = z + 1 and the vertical lines © = —1 and x = 2 is vertically simple. Thus
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b) The solid T" bounded by the parabolic cylinder y = 1 — 2% and the planes y = 0,
z =1, z =0 is z-simple, y-simple and z-simple. Thus we may attempt to compute
the integral in three ways.

1st way. The orthogonal projection of 7" on the (y, z)-plane is the square R = {(y, 2) :
0<y<1,0<z<1}. Thus
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2nd way. The orthogonal projection of T" on the (z, z)-plane is the rectangle S =
{(z,2): =1 <2 <1,0<2<1}. Thus
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Since the function x(1 — 2?)? is odd, we have f_ll z(1 — 2?)%dx = 0 (it is also easy

to verify this directly). Thus
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3rd way. The orthogonal projection of T" on the (x, y)-plane is the region B bounded
by the parabola y = 1 — 22 and the x-axis. Thus
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where R is the region bounded by the lines y = 0, z = 1 and the parabola y = 2.

c) We have

This region is vertically simple so
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Solution to Problem 3. a) The region R in the first quadrant, bounded by the

curve r = /7 + 0, is radially simple so we use integration is polar coordinates:
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b) We use spherical coordinates. In spherical coordinates the part 7' of the ball
22+ y? + 22 < 1 in the first octant is given by T'= {(p,$,0) : 0 < p <1, 0< ¢ <
w/2, 0 <0 <7/2}. Thus
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Solution to Problem 4. a) The curve C' has parametrization x = t, y = 2t,
t €[0,1]. Thus
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c) We know that
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Solution to Problem 5. The surface is given by the parametric equation
r(u,v) =< cosu,sinu,z =u+v >,

where 0 < u < 7 and 0 < v < 1. We have r, =< —sinu,cosu,1 > and r, =<

0,0,1 >. Thus r, Xr, =< cosu,sinu,0 > and |r, X r,| = 1. The area of this surface
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Solution to Problem 6. The volume of the solid R between the paraboloids
z=a?+y% z = 4(2*+y?) and the planes z = 1, z = dequals V = [ [ fR 1 dx dy dz.
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Since the map
F(rt0) = (% cos 0, % sin @, r?)

takes the box B = {(r,£,0) : 1 <r <21 <t <2,0<86 <27} bijectively onto R,

we may use the change of variables formula
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where JI' is the Jacobian of F'. The Jacobian is the determinant of the matrix

%COS@ ;—{cos@ %sin@

1sing ;—{sin@ %COSQ

t
2r 0 0

Expansion along the third row gives
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Thus



