
Solutions to Exam III

Solution to Problem 1. We first compute all critical points of the function

f(x, y) = x2 + 2xy4 − 4xy2 (even though they are given to us in the statement of

the problem). We have ∇f =< 2x + 2y4 − 4y2, 8xy3 − 8xy >. Thus we need to

solve the system of two equations: 2x + 2y4 − 4y2 = 0, 8xy3 − 8xy = 0. The first

equation can be written as x = y2(2 − y2) and the second is simply xy(y2 − 1) = 0.

It follows that y2(2−y2)y(y2−1) = 0, which means that y = 0, or y2 = 2, or y2 = 1.

We have then five possibilities y = −
√

2,−1, 0, 1,
√

2. From the first equation we

compute the corresponding values of x: 0, 1, 0, 1, 0. Thus the only critical points of

f are (0,−
√

2), (1,−1), (0, 0), (1, 1), (0,
√

2).

For each critical point (a, b) we need to compute the quantities

A =
∂2f

∂x2
(a, b), B =

∂2f

∂x∂y
(a, b), C =

∂2f

∂y2
(a, b),∆ = AC − B2.

If ∆ > 0 and A > 0 then f has a local minimum at (a, b). If ∆ > 0 and A < 0 then

f has a local maximum at (a, b). If ∆ < 0 then (a, b) is a saddle point. Note that

for f = x2 + 2xy4 − 4xy2 we have

∂2f

∂x2
= 2,

∂2f

∂x∂y
= 8y3 − 8y,

∂2f

∂y2
= 8x(3y2 − 1).

Now it is easy to see that for the points (0,−
√

2) and (0,
√

2) we have ∆ =

−128 < 0, so these are saddle points.

For the points (1,−1) and (1, 1) we have ∆ = 32 and A = 2 > 0, so f has a local

minimum at (1,−1) and at (1, 1).

Finally, for (0, 0) we get ∆ = 0. To determine what type of critical point is (0, 0)

note that, when (0, 0) is approached along the line y = 0, our function f(x, 0) = x2

assumes positive values. Thus f assumes positive values in every neighborhood of

(0, 0). On the other hand, when (0, 0) is approached along the parabola y2 = x, our

function

f(x, y) = x(x + 2y4 − 4y2) = x(x + 2x2 − 4x) = x2(−3 + 2x)
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is negative for all x < 3/2. Thus f also assumes negative values in every neighbor-

hood of (0, 0). This shows that (0, 0) is a saddle point.

Solution to Problem 2. a) The region bounded by the parabola y = x2 − 2, the

line y = x + 1 and the vertical lines x = −1 and x = 2 is vertically simple. Thus

∫ ∫

R

1

3 + x − x2
dx dy =

∫ 2

−1

∫ x+1

x2
−2

1

3 + x − x2
dy dx =

∫ 2

−1

1

3 + x − x2

(
∫ x+1

x2
−2

dy

)

dx

=

∫ 2

−1

1

3 + x − x2

(

(x + 1) − (x2 − 2)
)

dx =

∫ 2

−1

dx = 3

b) The solid T bounded by the parabolic cylinder y = 1 − x2 and the planes y = 0,

z = 1, z = 0 is x-simple, y-simple and z-simple. Thus we may attempt to compute

the integral in three ways.

1st way. The orthogonal projection of T on the (y, z)-plane is the square R = {(y, z) :

0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. Thus

∫ ∫ ∫

T

4xyz dx dy dz =

∫ ∫

R

(

∫

√

1−y

−

√

1−y

4xyz dx

)

dy dz

=

∫ ∫

R

2yz
(

(
√

1 − y)2 − (−
√

1 − y)2
)

dx dy =

∫ ∫

R

0 dx dy = 0

2nd way. The orthogonal projection of T on the (x, z)-plane is the rectangle S =

{(x, z) : −1 ≤ x ≤ 1, 0 ≤ z ≤ 1}. Thus

∫ ∫ ∫

T

4xyz dx dy dz =

∫ ∫

S

(

∫ 1−x2

0

4xyz dy

)

dx dz =

∫ ∫

S

2xz(1 − x2)2) dx dz =

∫ 1

0

2z

(
∫ 1

−1

x(1 − x2)2 dx

)

dz.

Since the function x(1 − x2)2 is odd, we have
∫ 1

−1
x(1 − x2)2dx = 0 (it is also easy

to verify this directly). Thus

∫ ∫ ∫

T

4xyz dx dy dz =

∫ 1

0

2z · 0 dz = 0.

3rd way. The orthogonal projection of T on the (x, y)-plane is the region B bounded

by the parabola y = 1 − x2 and the x-axis. Thus

∫ ∫ ∫

T

4xyz dx dy dz =

∫ ∫

B

(∫ 1

0

4xyz dz

)

dxdy =

∫ ∫

B

2xy dx dy =
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=

∫ 1

−1

(

∫ 1−x2

0

2xy dy

)

dx =

∫ 1

−1

x(1 − x2)2 dx = 0.

c) We have
∫ 1

0

∫ 1

√
y

3ex3

dx dy =

∫ ∫

R

3ex3

dx dy

where R is the region bounded by the lines y = 0, x = 1 and the parabola y = x2.

This region is vertically simple so

∫ ∫

R

3ex3

dx dy =

∫ 1

0

∫ x2

0

3ex3

dy dx =

∫ 1

0

3x2ex3

dx = e − 1.

Solution to Problem 3. a) The region R in the first quadrant, bounded by the

curve r =
√

π + θ, is radially simple so we use integration is polar coordinates:

∫ ∫

R

2 cos(x2+y2) dx dy =

∫ π/2

0

∫

√

π+θ

0

2 cos(r2)r dr dθ =

∫ π/2

0

sin(π+θ) dθ = −1

b) We use spherical coordinates. In spherical coordinates the part T of the ball

x2 + y2 + z2 ≤ 1 in the first octant is given by T = {(ρ, φ, θ) : 0 ≤ ρ ≤ 1, 0 ≤ φ ≤
π/2, 0 ≤ θ ≤ π/2}. Thus

∫ ∫ ∫

T

4z
√

1 + (x2 + y2 + z2)2 dx dy dz =

∫ π/2

0

∫ π/2

0

∫ 1

0

4ρ cosφ
√

1 + ρ4ρ2 sin φ dρ dθ dφ

=

∫ π/2

0

∫ π/2

0

sin φ cos φ

(
∫ 1

0

√

1 + ρ44ρ3 dρ

)

dθ dφ

=

∫ π/2

0

∫ π/2

0

sinφ cos φ

(

2

3
(2
√

2 − 1)

)

dθ dφ =
2

3
(2
√

2−1)

∫ π/2

0

∫ π/2

0

sin φ cos φ dθ dφ =

=
2

3
(2
√

2 − 1)
π

2

∫ π/2

0

sin φ cos φ dφ =
π

3
(2
√

2 − 1)
1

2
=

π

6
(2
√

2 − 1).

Solution to Problem 4. a) The curve C has parametrization x = t, y = 2t,

t ∈ [0, 1]. Thus

∫

C

e4x2
−y2

ds =

∫ 1

0

e4t2−(2t)2
√

12 + 22 dt =
√

5.

c) We know that
∫

C

F · T ds =

∫

C

−y dx + x dy + (z − x2 − y2) dz =

3



=

∫ π

0

(− sin t(− sin t) + cos t cos t + (t − cos2 t − sin2 t)) dt =

∫ π

0

t dt =
π2

2
.

Solution to Problem 5. The surface is given by the parametric equation

r(u, v) =< cos u, sin u, z = u + v >,

where 0 ≤ u ≤ π and 0 ≤ v ≤ 1. We have ru =< − sin u, cos u, 1 > and rv =<

0, 0, 1 >. Thus ru×rv =< cosu, sin u, 0 > and |ru×rv| = 1. The area of this surface

is
∫ π

0

∫ 1

0

|ru × rv| du dv =

∫ π

0

∫ 1

0

1 du dv = π.

Solution to Problem 6. The volume of the solid R between the paraboloids

z = x2+y2, z = 4(x2+y2) and the planes z = 1, z = 4 equals V =
∫ ∫ ∫

R
1 dx dy dz.

Since the map

F (r, t, θ) = (
r

t
cos θ,

r

t
sin θ, r2)

takes the box B = {(r, t, θ) : 1 ≤ r ≤ 2, 1 ≤ t ≤ 2, 0 ≤ θ ≤ 2π} bijectively onto R,

we may use the change of variables formula
∫ ∫ ∫

R

1 dx dy dz =

∫ ∫ ∫

B

|JF | dr dt dθ,

where JF is the Jacobian of F . The Jacobian is the determinant of the matrix








1
t
cos θ −r

t2
cos θ −r

t
sin θ

1
t
sin θ −r

t2
sin θ r

t
cos θ

2r 0 0









.

Expansion along the third row gives

JF = 2r(
−r2

t3
cos2 θ − r2

t3
sin2 θ) =

−2r3

t3
.

Thus

V =

∫ ∫ ∫

B

2r3

t3
dr dt dθ =

∫ 2π

0

∫ 2

1

∫ 2

1

2r3

t3
dr dt dθ =

∫ 2π

0

∫ 2

1

15

2t3
dt dθ =

=

∫ 2π

0

45

16
dθ =

45π

8
.
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