Solutions to Exam III

Solution to Problem 1. We first compute all critical points of the function $f(x,y) = x^2 + 2xy^4 - 4xy^2$ (even though they are given to us in the statement of the problem). We have $\nabla f = \langle 2x + 2y^4 - 4y^2, 8xy^3 - 8xy \rangle$. Thus we need to solve the system of two equations: $2x + 2y^4 - 4y^2 = 0$, $8xy^3 - 8xy = 0$. The first equation can be written as $x = y^2(2 - y^2)$ and the second is simply $xy(y^2 - 1) = 0$. It follows that $y^2(2-y^2)y(y^2-1) = 0$, which means that y = 0, or $y^2 = 2$, or $y^2 = 1$. We have then five possibilities $y = -\sqrt{2}, -1, 0, 1, \sqrt{2}$. From the first equation we compute the corresponding values of x: 0, 1, 0, 1, 0. Thus the only critical points of f are $(0, -\sqrt{2}), (1, -1), (0, 0), (1, 1), (0, \sqrt{2})$.

For each critical point (a, b) we need to compute the quantities

$$A = \frac{\partial^2 f}{\partial x^2}(a, b), B = \frac{\partial^2 f}{\partial x \partial y}(a, b), C = \frac{\partial^2 f}{\partial y^2}(a, b), \Delta = AC - B^2.$$

If $\Delta > 0$ and A > 0 then f has a local minimum at (a, b). If $\Delta > 0$ and A < 0 then f has a local maximum at (a, b). If $\Delta < 0$ then (a, b) is a saddle point. Note that for $f = x^2 + 2xy^4 - 4xy^2$ we have

$$\frac{\partial^2 f}{\partial x^2} = 2, \frac{\partial^2 f}{\partial x \partial y} = 8y^3 - 8y, \frac{\partial^2 f}{\partial y^2} = 8x(3y^2 - 1).$$

Now it is easy to see that for the points $(0, -\sqrt{2})$ and $(0, \sqrt{2})$ we have $\Delta = -128 < 0$, so these are saddle points.

For the points (1, -1) and (1, 1) we have $\Delta = 32$ and A = 2 > 0, so f has a local minimum at (1, -1) and at (1, 1).

Finally, for (0,0) we get $\Delta = 0$. To determine what type of critical point is (0,0)note that, when (0,0) is approached along the line y = 0, our function $f(x,0) = x^2$ assumes positive values. Thus f assumes positive values in every neighborhood of (0,0). On the other hand, when (0,0) is approached along the parabola $y^2 = x$, our function

$$f(x,y) = x(x+2y^4-4y^2) = x(x+2x^2-4x) = x^2(-3+2x)$$

is negative for all x < 3/2. Thus f also assumes negative values in every neighborhood of (0, 0). This shows that (0, 0) is a saddle point.

Solution to Problem 2. a) The region bounded by the parabola $y = x^2 - 2$, the line y = x + 1 and the vertical lines x = -1 and x = 2 is vertically simple. Thus

$$\int \int_{R} \frac{1}{3+x-x^{2}} \, \mathrm{d}x \, \mathrm{d}y = \int_{-1}^{2} \int_{x^{2}-2}^{x+1} \frac{1}{3+x-x^{2}} \, \mathrm{d}y \, \mathrm{d}x = \int_{-1}^{2} \frac{1}{3+x-x^{2}} \left(\int_{x^{2}-2}^{x+1} \mathrm{d}y \right) \, \mathrm{d}x$$
$$= \int_{-1}^{2} \frac{1}{3+x-x^{2}} \left((x+1) - (x^{2}-2) \right) \, \mathrm{d}x = \int_{-1}^{2} \mathrm{d}x = 3$$

b) The solid T bounded by the parabolic cylinder $y = 1 - x^2$ and the planes y = 0, z = 1, z = 0 is x-simple, y-simple and z-simple. Thus we may attempt to compute the integral in three ways.

<u>1st way.</u> The orthogonal projection of T on the (y, z)-plane is the square $R = \{(y, z) : 0 \le y \le 1, 0 \le z \le 1\}$. Thus

$$\int \int \int_T 4xyz \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int \int_R \left(\int_{-\sqrt{1-y}}^{\sqrt{1-y}} 4xyz \, \mathrm{d}x \right) \mathrm{d}y \, \mathrm{d}z$$
$$= \int \int_R 2yz \left((\sqrt{1-y})^2 - (-\sqrt{1-y})^2 \right) \mathrm{d}x \, \mathrm{d}y = \int \int_R 0 \, \mathrm{d}x \, \mathrm{d}y = 0$$

<u>2nd way.</u> The orthogonal projection of T on the (x, z)-plane is the rectangle $S = {(x, z) : -1 \le x \le 1, 0 \le z \le 1}$. Thus

$$\int \int \int_{T} 4xyz \, dx \, dy \, dz = \int \int_{S} \left(\int_{0}^{1-x^{2}} 4xyz \, dy \right) dx \, dz =$$
$$\int \int_{S} 2xz(1-x^{2})^{2} dx \, dz = \int_{0}^{1} 2z \left(\int_{-1}^{1} x(1-x^{2})^{2} \, dx \right) dz.$$

Since the function $x(1-x^2)^2$ is odd, we have $\int_{-1}^{1} x(1-x^2)^2 dx = 0$ (it is also easy to verify this directly). Thus

$$\int \int \int_T 4xyz \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_0^1 2z \cdot 0 \, \mathrm{d}z = 0$$

<u>3rd way</u>. The orthogonal projection of T on the (x, y)-plane is the region B bounded by the parabola $y = 1 - x^2$ and the x-axis. Thus

$$\int \int \int_{T} 4xyz \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int \int_{B} \left(\int_{0}^{1} 4xyz \, \mathrm{d}z \right) \mathrm{d}x \mathrm{d}y = \int \int_{B} 2xy \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int_{-1}^{1} \left(\int_{0}^{1-x^{2}} 2xy \, \mathrm{d}y \right) \mathrm{d}x = \int_{-1}^{1} x(1-x^{2})^{2} \, \mathrm{d}x = 0.$$

c) We have

$$\int_{0}^{1} \int_{\sqrt{y}}^{1} 3e^{x^{3}} \, \mathrm{d}x \, \mathrm{d}y = \int \int_{R} 3e^{x^{3}} \, \mathrm{d}x \, \mathrm{d}y$$

where R is the region bounded by the lines y = 0, x = 1 and the parabola $y = x^2$. This region is vertically simple so

$$\int \int_{R} 3e^{x^{3}} \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{1} \int_{0}^{x^{2}} 3e^{x^{3}} \, \mathrm{d}y \, \mathrm{d}x = \int_{0}^{1} 3x^{2}e^{x^{3}} \, \mathrm{d}x = e - 1.$$

Solution to Problem 3. a) The region R in the first quadrant, bounded by the curve $r = \sqrt{\pi + \theta}$, is radially simple so we use integration is polar coordinates:

$$\int \int_{R} 2\cos(x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{\pi/2} \int_{0}^{\sqrt{\pi + \theta}} 2\cos(r^2)r \, \mathrm{d}r \, \mathrm{d}\theta = \int_{0}^{\pi/2} \sin(\pi + \theta) \, \mathrm{d}\theta = -1$$

b) We use spherical coordinates. In spherical coordinates the part T of the ball $x^2 + y^2 + z^2 \leq 1$ in the first octant is given by $T = \{(\rho, \phi, \theta) : 0 \leq \rho \leq 1, 0 \leq \phi \leq \pi/2\}$. Thus

$$\int \int \int_{T} 4z \sqrt{1 + (x^2 + y^2 + z^2)^2} \, dx \, dy \, dz = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{1} 4\rho \cos \phi \sqrt{1 + \rho^4} \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$
$$= \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \phi \cos \phi \left(\int_{0}^{1} \sqrt{1 + \rho^4} 4\rho^3 \, d\rho \right) d\theta \, d\phi$$
$$= \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \phi \cos \phi \left(\frac{2}{3} (2\sqrt{2} - 1) \right) d\theta \, d\phi = \frac{2}{3} (2\sqrt{2} - 1) \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \phi \cos \phi \, d\theta \, d\phi =$$
$$= \frac{2}{3} (2\sqrt{2} - 1) \frac{\pi}{2} \int_{0}^{\pi/2} \sin \phi \cos \phi \, d\phi = \frac{\pi}{3} (2\sqrt{2} - 1) \frac{1}{2} = \frac{\pi}{6} (2\sqrt{2} - 1).$$

Solution to Problem 4. a) The curve C has parametrization $x = t, y = 2t, t \in [0, 1]$. Thus

$$\int_C e^{4x^2 - y^2} \mathrm{d}s = \int_0^1 e^{4t^2 - (2t)^2} \sqrt{1^2 + 2^2} \, \mathrm{d}t = \sqrt{5}.$$

c) We know that

$$\int_C \mathbf{F} \cdot \mathbf{T} \, \mathrm{d}s = \int_C -y \, \mathrm{d}x + x \, \mathrm{d}y + (z - x^2 - y^2) \, \mathrm{d}z =$$

$$= \int_0^{\pi} (-\sin t(-\sin t) + \cos t \cos t + (t - \cos^2 t - \sin^2 t)) \, \mathrm{d}t = \int_0^{\pi} t \, \mathrm{d}t = \frac{\pi^2}{2}.$$

Solution to Problem 5. The surface is given by the parametric equation

$$\mathbf{r}(u,v) = <\cos u, \sin u, z = u + v >,$$

where $0 \le u \le \pi$ and $0 \le v \le 1$. We have $\mathbf{r}_u = \langle -\sin u, \cos u, 1 \rangle$ and $\mathbf{r}_v = \langle 0, 0, 1 \rangle$. Thus $\mathbf{r}_u \times \mathbf{r}_v = \langle \cos u, \sin u, 0 \rangle$ and $|\mathbf{r}_u \times \mathbf{r}_v| = 1$. The area of this surface is

$$\int_0^{\pi} \int_0^1 |\mathbf{r}_u \times \mathbf{r}_v| \, \mathrm{d}u \, \mathrm{d}v = \int_0^{\pi} \int_0^1 1 \, \mathrm{d}u \, \mathrm{d}v = \pi.$$

Solution to Problem 6. The volume of the solid R between the paraboloids $z = x^2 + y^2$, $z = 4(x^2 + y^2)$ and the planes z = 1, z = 4 equals $V = \int \int \int_R 1 \, dx \, dy \, dz$. Since the map

$$F(r,t,\theta) = \left(\frac{r}{t}\cos\theta, \frac{r}{t}\sin\theta, r^2\right)$$

takes the box $B = \{(r, t, \theta) : 1 \le r \le 2, 1 \le t \le 2, 0 \le \theta \le 2\pi\}$ bijectively onto R, we may use the change of variables formula

$$\int \int \int_{R} 1 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int \int \int_{B} |JF| \, \mathrm{d}r \, \mathrm{d}t \, \mathrm{d}\theta,$$

where JF is the Jacobian of F. The Jacobian is the determinant of the matrix

$$\begin{pmatrix} \frac{1}{t}\cos\theta & \frac{-r}{t^2}\cos\theta & \frac{-r}{t}\sin\theta\\ \frac{1}{t}\sin\theta & \frac{-r}{t^2}\sin\theta & \frac{r}{t}\cos\theta\\ 2r & 0 & 0 \end{pmatrix}$$

Expansion along the third row gives

$$JF = 2r(\frac{-r^2}{t^3}\cos^2\theta - \frac{r^2}{t^3}\sin^2\theta) = \frac{-2r^3}{t^3}.$$

Thus

$$V = \int \int \int_{B} \frac{2r^{3}}{t^{3}} \, \mathrm{d}r \, \mathrm{d}t \, \mathrm{d}\theta = \int_{0}^{2\pi} \int_{1}^{2} \int_{1}^{2} \frac{2r^{3}}{t^{3}} \, \mathrm{d}r \, \mathrm{d}t \, \mathrm{d}\theta = \int_{0}^{2\pi} \int_{1}^{2} \frac{15}{2t^{3}} \, \mathrm{d}t \, \mathrm{d}\theta =$$
$$= \int_{0}^{2\pi} \frac{45}{16} \, \mathrm{d}\theta = \frac{45\pi}{8}.$$