Homework due on Wednesday, March 30

Read carefully sections 6.1-6.4 in the book. Read the notes about relations linked on the course page. Solve the following problems.

Problem 1. Let p be a prime number. Prove that for any integer k > 0, if a_1, \ldots, a_k are integers and $p|a_1a_2\ldots a_k$ then $p|a_i$ for some $i, 1 \le i \le k$. Hint: Induction on k.

Problem 2. a) Let p > 1 be a positive integer which has the following property: for any integers a, b, if p|ab then p|a or p|b. Prove that p is a prime.

b) Assuming that p_1, p_2, \ldots, p_n is the list of all prime numbers, what can you say about prime factorization of the number $1 + p_1 p_2 \ldots p_n$? Conclude that the set of prime numbers is infinite.