Homework due on Friday, April 1

Read carefully sections 6.1-6.4 in the book. Read the notes about congruences linked on the course page. Solve the following problems.

Problem 1. Use Euclid's algorithm to compute gcd(803, 154) and find integers λ, μ such that $gcd(803, 154) = \lambda \cdot 803 + \mu \cdot 154$. Show all your work.

Problem 2. Let *n* be a positive integer. Consider the set \mathbb{Z}_n of equivalence classes modulo *n*. Let $x \in \mathbb{Z}_n$.

a) Prove that if x contains an element which is relatively prime to n then all elements in the class x are relatively prime to n.

b) Let x = [m], where *m* is relatively prime to *n*. We have proved in class that there exist integers u, w such that um + wn = 1. Use this to prove that *x* has a multiplicative inverse in \mathbb{Z}_n .

c) Prove the converse, that if x has a multiplicative inverse in \mathbb{Z}_n then x = [m] for some m relatively prime to n.

d) List all elements in \mathbb{Z}_{12} which have multiplicative inverse.

Problem 3. Find the remainder when 3^{337} is divided by 31. Hint: Use Fermat's Little Theorem.

Problem 4. a) Let p and q be distinct primes numbers. Prove that if p|m and q|m then pq|m.

b) Let p and q be distinct prime numbers. Prove that

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq} .$$