
Solutions to Exam I

Problem 1. a) State all 9 axioms about addition and multiplication (4 about +, 4 about · and one
connecting + and ·.) (7 points)

b) Using only the axioms for + prove that if a + c = b + c then a = b. (6 points)

c) Using only the axioms prove that 0 · a = 0 for any a. Hint. 0 + 0 = 0. (6 points)

Solution: a) We consider a set R on which two operations + (addition) and · (multiplication) are
defined and two different elements 0 and 1 are distinguished. We impose the following axioms. There
are 4 axioms about addition:
A1 (commutativity of addition): a + b = b + a for any a, b ∈ R.
A2 (associativity of addition): (a + b) + c = a + (b + c) for any a, b, c ∈ R.
A3 (identity for addition): a + 0 = a for any a ∈ R.
A4 (additive inverse): for any a ∈ R there exists −a ∈ R such that a + (−a) = 0.

There are 4 axioms about multiplication:
M1 (commutativity of multiplication): a · b = b · a for any a, b ∈ R.
M2 (associativity of multiplication): (a · b) · c = a · (b · c) for any a, b, c ∈ R.
M3 (identity for multiplication): a · 1 = a for any a ∈ R.
M4 (no zero divisors): for any a, b ∈ R, if a · b = 0 then a = 0 or b = 0.

Finally there is an axiom connecting addition and multiplication:
D (distributivity of multiplication over addition): (a + b) · c = (a · c) + (b · c).

Remark. (i) Any R as above for which all axioms are satisfied except possibly M4 is called a
commutative ring. If it satisfies also M4, then it is called an integral domain.
(ii) Assuming that all the other axioms hold, M4 is equivalent to the following axiom:
M41 (cancellation for multiplication): For any a, b, c ∈ R, if a 6= 0 and a · b = a · c then b = c.

b) Suppose that a + c = b + c. Adding −c to both sides we get (a + c) + (−c) = (b + c) + (−c).
Using associativity of addition, the last equality can be stated as a + (c + (−c)) = b + (c + (−c)). By
definition of −c, we have c + (−c) = 0. It follows that a + 0 = b + 0. By identity of addition, we get
a + 0 = a and b + 0 = b. It follows that a = b.

c) Let a ∈ R. Multiplying the equality 0 + 0 = 0 by a we get (0 + 0) · a = 0 · a. Using distributivity,
we conclude that (0 · a) + (0 · a) = 0 · a. By identity for addition, we can write the last equality as
(0 · a) + (0 · a) = 0 + (0 · a). By part b), we conclude that 0 · a = 0.

Problem 2. a) State the axioms about the set of positive elements N. (7 points)

b) What does it mean that a < b? (4 points)

c) Prove using only the axioms and the definition in b) that if 0 < a and ab < ac then b < c. Do a
”proof by contradiction”. (7 points)

Solution: a) Assume that R satisfies all the 9 axioms stated in Problem 1 a). We add the following
axiom for positive elements:
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P (positive elements): There is a subset N of R (elements of which are called positive) with the
following properties:
P1 (closure under addition): If a and b are in N then a + b ∈ N.
P2 (closure under multiplication): If a and b are in N then a · b ∈ N.
P3: 0 6∈ N.
P4 (trichotomy): For any a ∈ R one of the following holds: a ∈ N, or −a ∈ N, or a = 0.

b) By definition, a < b means that b − a ∈ N.

c) Suppose that 0 < a and ab < ac. In other words, a ∈ N and ac − ab ∈ N. We want to prove that
b < c. Suppose that this is not true. This means that c − b 6∈ N. By trichotomy (axiom P4), we get
that either −(c − b) ∈ N or c − b = 0.

Suppose first that c − b = 0. It follows that b = c, so ab = ac. This means that ac − ab = 0 so
ac−ab 6∈ N by axiom P3. This however contradicts the condition that ac−ab ∈ N. The contradiction
shows that the case c − b = 0 is not possible.

It remains to consider the case when −(c − b) ∈ N. This means that b − c ∈ N. Since a ∈ N, the
closure under multiplication axiom yields that a(b− c) = ab− ac ∈ N. Thus we have both ac− ab ∈ N

and ab − ac ∈ N. The closure under addition axiom implies that (ab − ac) + (ac − ab) = 0 ∈ N. This
however contradicts axiom P3. The contradiction proves that our assumption that b < c does not
hold is false. Thus b < c is true.

Problem 3. a) State the Induction axiom. (5 points)

b) A sequence is defined recursively as follows: a0 = 2, a1 = 3, an+1 = 3an − 2an−1 for n ≥ 1. Prove
by induction that an = 2n + 1 for every integer n ≥ 0. (7 points)

c) Prove by induction that
n

∑

k=1

(2k − 1) = n2 for every natural number n. (7 points)

Solution: a) Suppose that R = Z satisfies all the axioms from problem 1 a) and that N is a subset
of R which satisfies the axioms from problem 2 a). We add the following axiom:

I (induction axiom): Any subset S of Z such that 1 ∈ S and whenever a ∈ S then also a + 1 ∈ S

contains the set N.

b) We prove that an = 2n + 1 by induction on n. For n = 0 we have a0 = 2 = 20 + 1, so the result is
true for n = 0. Furthermore, a1 = 3 = 21 + 1, so the result is true for n = 1. Assume that n ≥ 1 and
that the result is true for 0, 1, . . . , n. We need to prove that the result holds for n + 1. By definition,
we have an+1 = 3an − 2an−1. By inductive assumption, an = 2n + 1 and an−1 = 2n−1 + 1. Thus

an+1 = 3(2n + 1) − 2(2n−1 + 1) = 3 · 2n + 3 − 2n − 2 = 2 · 2n + 1 = 2n+1 + 1,

so the result indeed holds for n + 1. By the method of induction, the result is true for every integer
n ≥ 0.

c) We prove that
n

∑

k=1

(2k − 1) = n2 by induction on n. When n = 1, both the left hand side and

the right hand side are 1 so the result holds. Suppose that n ≥ 1 and the result holds for 1, 2, . . . , n.

We need to prove the result for n + 1, i.e. we need to prove that
n+1
∑

k=1

(2k − 1) = (n + 1)2. Note that
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n+1
∑

k=1

(2k − 1) =
n

∑

k=1

(2k − 1) + (2(n + 1)− 1) =
n

∑

k=1

(2k − 1) + (2n + 1). By the inductive assumption, we

have
n

∑

k=1

(2k − 1) = n2 and therefore
n+1
∑

k=1

(2k − 1) = n2 + (2n + 1) = (n + 1)2, so the result holds for

n + 1. By the method of induction, the result holds for every natural number n.

Problem 4. a) Define the symmetric difference A ÷ B of two sets. State basic properties of this
operation. (5 points)

Solve two of the following three problems.

b) Prove that (A \ B) ∩ (C \ D) = (A ∩ C) \ (B ∪ D). (7 points)

c) Use membership table to prove that (A \ B) ÷ (A \ C) = A ∩ (B ÷ C). (7 points)

d) Express each side of the equality

(A \ B) ∪ (B \ C) = (A ∪ B) \ (B ∩ C)

using only the operation + of symmetric difference and · of intersection. Recall that X \Y = X +XY

and X ∪ Y = X + Y + XY . Then verify that both sides are indeed equal. (7 points)

Solution: a) By definition, A ÷ B = (A \ B) ∪ (B \ A). In other words, x ∈ A ÷ B if and only if
x is in either A or B but not both. Thus A ÷ B = (A ∪ B) \ (A ∩ B). Among the properties of the
symmetric difference we have the following:

(1) A ÷ B = B ÷ A.
(2) (A ÷ B) ÷ C = A ÷ (B ÷ C).
(3) A ÷ ∅ = A.
(4) A ÷ A = ∅.
(5) (A ÷ B) ∩ C = (A ÷ C) ∩ (B ÷ C).

b) Note that x ∈ (A \ B) ∩ (C \ D) if and only if x ∈ (A \ B) and x ∈ (C \ D), which is equivalent to
the conditions x ∈ A and x 6∈ B and x ∈ C and x 6∈ D, which in turn is equivalent to the conditions
x ∈ A and x ∈ C and x 6∈ B and x 6∈ D which is equivalent to x ∈ (A ∩C) and x 6∈ (B ∪D), which is
equivalent to x ∈ (A ∩C) \ (B ∪D). Thus the sets (A \B) ∩ (C \D) and (A ∩C) \ (B ∪D) have the
same elements and therefore they are equal.
Remark. One can also solve this problem using methods employed in parts c) or d).

c)

A B C A \ B A \ C (A \ B) ÷ (A \ C) B ÷ C A ∩ (B ÷ C)

1 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1
1 0 1 1 0 1 1 1
1 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
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Since the columns for (A\B)÷(A\C) and A∩(B÷C) are equal, we conclude that (A\B)÷(A\C) =
A ∩ (B ÷ C).
Remark. The first three columns of the table describe all possible membership patterns. For ex-
ample, the first row corresponds to elements which belong to all three sets A, B, C, and the 4th row
corresponds to elements which belong to A but do not belong to B or C. The second part of the table
is then filled by going through each row and putting 1 if the elements described by the first part of
the row belong to the set naming a given column and putting 0 if they do not belong to this set. For
example, in the second row in the column for A \C we put 1, since elements in this row belong to A,
B but not C so they belong to A \ C.

d) We have

(A\B)∪(B\C) = (A+AB)+(B+BC)+(A+AB)(B+BC) = A+AB+B+BC+AB+ABC+ABB+

+ABBC = A + B + AB + BC + AB + AB + ABC + ABC = A + B + AB + BC.

(we use the properties X + X = 0 and XX = X). Similarly,

(A ∪ B) \ (B ∩ C) = (A + B + AB) + (A + B + AB)BC = A + B + AB + ABC + BBC + ABBC =

= A + B + AB + BC + ABC + ABC = A + B + AB + BC.

We see that both (A \B)∪ (B \C) and (A∪B) \ (B ∩C) are equal to A + B + AB + BC, hence they
are equal to each other.

Problem 5. This problem is optional. You may earn 15 extra points. A set A consists of 2n

elements. A is split into disjoint pieces B and C, each with n elements.

a) What is the number of subsets of A which contain s elements in B and n − s elements in C?

b) Prove that
n

∑

s=0

(

n

s

)(

n

n − s

)

=

(

2n

n

)

. Conclude that
n

∑

s=0

(

n

s

)2

=

(

2n

n

)

.

Solution: a) We proved that a set with n elements has
(

n

k

)

subsets with exactly k elements. Thus we

can choose the s elements from B in
(

n

s

)

ways and to each such choice we can choose n − s elements

from B in
(

n

n−s

)

ways. It follows that we have
(

n

s

)(

n

n−s

)

choices for a subset of A which has s elements
in B and n − s elements in C.

b) Let us count the number of subsets of A with exactly n elements in two ways. On one hand, we

know that this number is equal to
(

2n

n

)

. On the other hand, every subset with n elements consists
of s elements from B and n − s elements from C, for some s ∈ {0, 1, . . . , n}. For a given s we have
(

n

s

)(

n

n−s

)

such subsets, as proved in part a). Thus the total number of subsets of A with n elements is

equal to
n

∑

s=0

(

n

s

)(

n

n − s

)

. This proves that
n

∑

s=0

(

n

s

)(

n

n − s

)

=

(

2n

n

)

. Note that
(

n

n−s

)

=
(

n

s

)

for all

s. It follows that
n

∑

s=0

(

n

s

)(

n

n − s

)

=
n

∑

s=0

(

n

s

)2

, so
n

∑

s=0

(

n

s

)2

=

(

2n

n

)

.


