
Solutions to Exam II

Problem 1. a) State the definition of a surjective function. How is the inverse function of a function
f : A −→ B defined and when does it exist?

b) Let f : N −→ N be a function defined by f(1) = 1 and for n > 1, f(n) is the smallest prime divisor
of n. For example, f(6) = 2 and f(15) = 3.

What is the domain, codomain, range of f? What is f−1({2})? What is f({3, 9, 21, 25})? What is
f ◦ f?

c) Let f : X −→ Y be a function. Prove that f−1(A ∩ B) = f−1(A) ∩ f−1(B).

Solution: a) A function f : A −→ B is surjective (or onto) if for any b ∈ B there is a ∈ A such
that f(a) = b (so B is equal to the range of f).

We say that the function g : B −→ A is the inverse function of f : A −→ B if f ◦ g = idB (i.e.
f(g(b)) = b for all b ∈ B) and g ◦ f = idA (i.e. g(f(a)) = a for all a ∈ A). The inverse of f exists if
and only if f is a bijection (i.e. it is both injective and surjective). For b ∈ B, the value g(b) is defined
as the unique element a ∈ A such that f(a) = b.

b) Since f : N −→ N, the domain of f is N and the codomain of f is N. By definition, every value
of f is either a prime number of 1. Conversely, if p is a prime number then f(p) = p so every prime
number is a value of f . This proves that the range of f is the set of all prime numbers and the number
1:

range of f = {n ∈ N : n = 1 or n is a prime number}.

The set f−1({2}) consists of all natural numbers which are mapped by f onto 2, i.e. all natural
numbers whose smallest prime divisor is 2. Since 2 is the smallest prime, this is the same as all the
numbers which are divisible by 2. In other words, f−1({2}) is the set of all even numbers:

f−1({2}) = {n ∈ N : n is even}.

Note that f(3) = 3, f(9) = 3, f(21) = 3, and f(25) = 5. Thus f({3, 9, 21, 25}) = {3, 5}.
Finally, note that f(f(1)) = f(1) = 1 and if n > 1 then f(n) is the smallest prime divisor of n. In

particular, f(n) is a prime number and therefore f(f(n)) = f(n). This proves that f ◦ f = f .

c) Let x ∈ f−1(A ∩ B). This means that f(x) ∈ A ∩ B, i.e. f(x) ∈ A and f(x) ∈ B. Thus
x ∈ f−1(A) and x ∈ f−1(B), which implies that x ∈ f−1(A)∩f−1(B). This proves that f−1(A∩B) ⊆
f−1(A) ∩ f−1(B).

Conversely, suppose that x ∈ f−1(A) ∩ f−1(B). Then x ∈ f−1(A) and x ∈ f−1(B), so f(x) ∈ A

and f(x) ∈ B. Thus f(x) ∈ A∩B and therefore x ∈ f−1(A∩B). This proves that f−1(A)∩f−1(B) ⊆
f−1(A ∩ B).

Since we proved that f−1(A ∩ B) ⊆ f−1(A) ∩ f−1(B) and f−1(A) ∩ f−1(B) ⊆ f−1(A ∩ B), we
conclude that f−1(A ∩ B) = f−1(A) ∩ f−1(B)

Problem 2. a) State the definition of a relation R on a set A. What does it mean that R is transitive?
What does it mean that R is antisymmetric? Define a relation R on the set A = {1, 2, 3, 4} which is
reflexive, neither symmetric nor antisymmetric.

b) Let us say that two natural numbers m, n are in the relation R if m and n are divisible by exactly
the same prime numbers. For example, (6, 12) ∈ R but (6, 9) 6∈ R. Prove that R is an equivalence
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relation on the set N. What is the equivalence class of 4? Find all natural numbers whose equivalence
class is finite.

Solution: a) A relation R on a set A is a subset R of A×A. Instead of writing (a, b) ∈ R one often
writes aRb and says that a is in relation R with b.
R is transitive if for any a, b, c ∈ A such that aRb and bRc we have aRc.
R is antisymmetric if for any a, b ∈ A, if aRb then bRb does not hold. In other words, if (a, b) ∈ R

then (b, a) 6∈ R.
We define the relation R by listing all its elements. Since R is supposed to be reflexive, it must

contain (1, 1), (2, 2), (3, 3), (4, 4). To make R not symmetric we will add (1, 2) but not (2, 1). To ensure
that it is not antisymmetric we add (3, 4) and (4, 3). Thus the relation

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (3, 4), (4, 3)}

has all the required properties.

b) In order to prove that R is an equivalence relation, we need to show that it is reflexive, symmetric
and transitive. Clearly every natural number has the same prime divisors as itself, so R is transitive.
If mRn then m and n are divisible by the same prime numbers so n and m are divisible by the same
prime numbers, i.e. nRm. This shows that R is symmetric. Now if mRn and nRk then m and n

are divisible by the same primes and n and k are divisible by the same primes, hence m and k are
divisible by the same primes (namely the primes which divide n). Thus mRk. This proves that R is
transitive. It follows that R is an equivalence relation.

Note that 2 is the only prime which divides 4. Thus m ∈ [4], i.e. mR4, if and only if 2 is the only
prime divisor of m. This happens if and only if m is a power of 2:

[4] = {2, 4, 8, 16, . . .} = {2k : k ∈ N}.

Note that 1 is the only natural number which has no prime divisors, so [1] = {1} is finite. Let n > 1.
Then the numbers n, n2, n3, . . . all have the same prime divisors. Thus [n] contains n, n2, n3, . . . , so
it is infinite. It follows that 1 is the only natural number whose equivalence class is finite.

Problem 3. a) State Fermat’s Little Theorem.

b) Find the remainder when 51603 is divided by 17.

c) In Z12 find the inverse of the class [5]. Use it to solve in Z12 the equation [5] · x + [2] = [9].

d) Suppose that ar ≡ b (mod m) and br ≡ a (mod m) . Prove that a2 ≡ b2 (mod m) .

Solution: a) Fermat’s Little Theorem: If p is a prime number and a is an integer not divisible by p,

then ap−1 ≡ 1 (mod p) .

An equivalent statement: If p is a prime number and a is an integer, then ap ≡ a (mod p) .

b) Since 17 is a prime number and 5 is not divisible by 17, we have 516 ≡ 1 (mod 17) by Fermat’s
Little Theorem. Thus

51603 = (516)100 · 53 ≡ 1100 · 53 = 53 (mod 17) .

Furthermore,

53 = 25 · 5 ≡ 8 · 5 = 40 ≡ 6 (mod 17) .

Thus 51603 ≡ 6 (mod 17) . Since 0 ≤ 6 < 17, the remainder when 51603 is divided by 17 is equal to 6.
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c) Since 5 · 5 = 25 ≡ 1 (mod 12) , we see that [5][5] = [1], so [5] is its own inverse.
To solve [5]x+[2] = [9] we add −[2] to both sides and get [5]x = [9]−[2] = [9−2] = [7]. Now we multiply
both sides by the multiplicative inverse of [5], which is [5], to get x = [5][5]x = [5][7] = [35] = [11] (as
35 ≡ 11 (mod 12) ). Thus x = [11].

d) By multiplying the congruence ar ≡ b (mod m) by b we get bar ≡ b2 (mod m) . Similarly,
multiplying br ≡ a (mod m) by a yields abr ≡ a2 (mod m) . Thus a2 ≡ b2 ≡ abr (mod m) .

Problem 4. a) State the division algorithm.

b) Use Euclid’s algorithm to compute gcd(889, 168). Find x, y ∈ Z such that 889x + 168y =
gcd(889, 168) . Be extremely careful with your calculations (and check your answers).

c) State the Fundamental Theorem of Arithmetic and Euclid’s Lemma.

d) Let a be an integer. Prove that the numbers 3a + 5 and 7a + 12 are relatively prime.

e) Let a, b be relatively prime integers. Prove that gcd(a, bn) = 1 for every natural number n.

Solution: a) Division Algorithm. Let n ∈ N. For any integer m there exist unique integers k and
r such that m = kn+ r and 0 ≤ r < n. The number k is the quotient and r is called the remainder

when m is divided by n.

b) Euclid’s algorithm yields:
889 = 5 · 168 + 49,

168 = 3 · 49 + 21,

49 = 2 · 21 + 7,

21 = 3 · 7 + 0.

It follows that gcd(889, 168) = 7. Working backwards,

7 = 49− 2 · 21 = 49− 2 · (168− 3 · 49) = 7 · 49− 2 · 168 = 7 · (889− 5 · 168)− 2 · 168 = 7 · 889− 37 · 168.

Thus x = 7, y = −37 work.

c) Fundamental Theorem of Arithmetic. Any integer n > 1 can be written in a unique up to

order way as a product of prime numbers. In other words, n is a product of prime numbers and if

n = p1 . . . ps = q1 . . . qt, where p1, . . . , ps, q1, . . . , qt are primes then s = t and the sequence q1, . . . , qt is

a permutation of the sequence p1, . . . , ps.

Euclid’s Lemma. If p is a prime number and a, b are integers such that p|ab, then p|a or p|b.
Note that this can be stated in an equivalent way as follows: if p is a prime, then Zp satisfies the

axiom M4: if xy = 0 the x = 0 or y = 0.

d) It suffices to find integers x, y such that x(7a + 12) + y(3a + 5) = 1. Note that 3(7a + 12) +
(−7)(3a + 5) = 1. Thus any common divisor of 3a + 5 and 7a + 12 must divide 1. It follows that
gcd(3a + 5, 7a + 12) = 1.

e) I’st method: Let a = p1 . . . ps and b = q1 . . . qt be factorizations of a and b into primes. Since a and
b are relatively prime, the sets of prime divisors of a and b are disjoint (i.e pi 6= qj for all i, j). But
the primes which appear in prime factorizations of b and bn are the same, so a and bn do not share
any primes in their prime factorizations, so they are relatively prime.
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II’nd method: We proceed by induction on n. For n = 1 the result is given. Suppose that for some
n ∈ N the results is true for 1, 2, . . . , n. Then gcd(a, bn) = 1 = gcd(a, b). There exist integers u, w, s, t

such that ua + wbn = 1 = sa + tb. Thus 1 = (ua + wbn)(sa + tb) = (uas + swbn + tub)a + (wt)bn+1.
This implies that gcd(a, bn+1) = 1, so the result holds for n + 1. By the method of induction, the
result holds for all n ∈ N.

III’rd method: Suppose that d > 1 is a common divisor of a and bn. Then d has a prime divisor p and
p is also a common divisor of a and bn. Since p is a prime and p|bn, we conclude by Euclid’s Lemma
that p|b. This however means that p is a common divisor of a and b, which contradicts the assumption
that gcd(a, b) = 1. The contradiction proves that d does not exist, i.e. gcd(a, bn) = 1.

Problem 5. a) Let R be an ordered field. Define the least upper bound of a subset A of R. State
the completeness axiom.

b) Let R be an ordered field which satisfies completeness axiom. Prove that the subset N of R is not
bounded above.

Solution: a) The least upper bound of a set A is the smallest among all upper bounds of A.

Completeness Axiom. Every non-empty bounded above subset of R has the lest upper bound.

b) The prove is by contradiction. Suppose that N is bounded above. By completeness axiom, N has
the lest upper bound r. Thus, for every n ∈ N we have n + 1 ≤ r (since n + 1 ∈ N). This means that
n ≤ r− 1 for all n ∈ N. It follows that r− 1 is an upper bound for N. But r− 1 < r and r is the least
upper bound, a contradiction. This proves that N is not bounded above.

Problem 6. Let a, b, c be non-zero integers. Consider the set S = {xa + yb + zc : x, y, z ∈ Z}. Prove
that S contains a positive integer d which divides each of a, b, c. Conclude that d is the largest
common divisor of a, b, and c and that d is the smallest positive element of S.

Solution: Let e = gcd(a, b). Thus there exist integers u, w such that e = ua + wb. Let d = gcd(e, c).
There exist integers s, t such that d = se+ tc. It follows that d = s(ua+wb)+ tc = (su)a+(sw)b+ tc,
so d ∈ S. By definition of d we have d|e and d|c. Since e|a and e|b we get that d|a, d|b, and d|c.
Thus d is a positive element of S which divides each of a, b, c. If h is a common divisor of a, b, c then
h|(su)a + (sw)b + tc = d, so h ≤ d. This proves that d is the greatest common divisor of a, b, c. If m

is any element of S then m = xa + yb + zc for some integers x, y, z. It follows that d|m (as d divides
a, b, c). Thus, if m > 0 then m ≥ d. In other words, d is the smallest positive element of S.

Exercise. Generalize this to any number of integers (not necessarily three).


