Solutions to Exam 11

Problem 1. a) State the definition of a surjective function. How is the inverse function of a function
f A — B defined and when does it exist?

b) Let f: N — N be a function defined by f(1) =1 and for n > 1, f(n) is the smallest prime divisor
of n. For example, f(6) =2 and f(15) = 3.
What is the domain, codomain, range of f? What is f~1({2})? What is f({3,9,21,25})? What is

folf?
c¢) Let f: X — Y be a function. Prove that f~1{(ANB) = f~1(A4) N f~1(B).

Solution: a) A function f : A — B is surjective (or onto) if for any b € B there is a € A such
that f(a) = b (so B is equal to the range of f).

We say that the function g : B — A is the inverse function of f : A — B if fog = idp (i.e.
f(g(b)) =bforallb e B) and go f =id4 (i.e. g(f(a)) = a for all a € A). The inverse of f exists if
and only if f is a bijection (i.e. it is both injective and surjective). For b € B, the value g(b) is defined
as the unique element a € A such that f(a) = b.

b) Since f : N — N, the domain of f is N and the codomain of f is N. By definition, every value
of f is either a prime number of 1. Conversely, if p is a prime number then f(p) = p so every prime
number is a value of f. This proves that the range of f is the set of all prime numbers and the number
1:

range of f = {n € N:n =1 or n is a prime number}.

The set f~1({2}) consists of all natural numbers which are mapped by f onto 2, i.e. all natural
numbers whose smallest prime divisor is 2. Since 2 is the smallest prime, this is the same as all the
numbers which are divisible by 2. In other words, f~1({2}) is the set of all even numbers:

f1{2}) = {n € N:n is even}.

Note that f(3) =3, f(9) =3, f(21) =3, and f(25) = 5. Thus f({3,9,21,25}) = {3,5}.
Finally, note that f(f(1)) = f(1) =1 and if n > 1 then f(n) is the smallest prime divisor of n. In
particular, f(n) is a prime number and therefore f(f(n)) = f(n). This proves that fo f = f.

¢) Let # € f~}(A N B). This means that f(r) € AN B, i.e. f(z) € A and f(r) € B. Thus
r € f~1(A) and = € f~1(B), which implies that x € f~*(A)N f~1(B). This proves that f1(ANB) C
ORI )

Conversely, suppose that z € f~1(A) N f~Y(B). Then x € f~1(A) and z € f~1(B), so f(z) € A
and f(z) € B. Thus f(z) € AN B and therefore x € f~'(AN B). This proves that f~1(A)Nf~1(B) C
Y ANB).

Since we proved that f~1 (AN B) C f~1(A) N fYB) and f~1(A) N fYB) C fY(ANB), we
conclude that f~1(ANB) = f~1(A)n f~4B)

Problem 2. a) State the definition of a relation R on a set A. What does it mean that R is transitive?
What does it mean that R is antisymmetric? Define a relation R on the set A = {1,2,3,4} which is
reflexive, neither symmetric nor antisymmetric.

b) Let us say that two natural numbers m,n are in the relation R if m and n are divisible by exactly
the same prime numbers. For example, (6,12) € R but (6,9) ¢ R. Prove that R is an equivalence
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relation on the set N. What is the equivalence class of 47 Find all natural numbers whose equivalence
class is finite.

Solution: a) A relation R on a set A is a subset R of A x A. Instead of writing (a,b) € R one often
writes aRb and says that a is in relation R with b.
R is transitive if for any a, b, c € A such that aRb and bRc we have aRc.
R is antisymmetric if for any a,b € A, if aRb then bRb does not hold. In other words, if (a,b) € R
then (b,a) € R.

We define the relation R by listing all its elements. Since R is supposed to be reflexive, it must
contain (1,1),(2,2),(3,3), (4,4). To make R not symmetric we will add (1,2) but not (2,1). To ensure
that it is not antisymmetric we add (3,4) and (4,3). Thus the relation

R={(1,1),(2,2),(3,3),(4,4),(1,2),(3,4), (4,3)}

has all the required properties.

b) In order to prove that R is an equivalence relation, we need to show that it is reflexive, symmetric
and transitive. Clearly every natural number has the same prime divisors as itself, so R is transitive.
If mRn then m and n are divisible by the same prime numbers so n and m are divisible by the same
prime numbers, i.e. nRm. This shows that R is symmetric. Now if mRn and nRk then m and n
are divisible by the same primes and n and k are divisible by the same primes, hence m and k are
divisible by the same primes (namely the primes which divide n). Thus mREk. This proves that R is
transitive. It follows that R is an equivalence relation.

Note that 2 is the only prime which divides 4. Thus m € [4], i.e. mR4, if and only if 2 is the only
prime divisor of m. This happens if and only if m is a power of 2:

[4] = {2,4,8,16,...} = {2" : k e N}.

Note that 1 is the only natural number which has no prime divisors, so [1] = {1} is finite. Let n > 1.

Then the numbers n, n?, n?,... all have the same prime divisors. Thus [n] contains n, n?, n3, ..., so

it is infinite. It follows that 1 is the only natural number whose equivalence class is finite.
Problem 3. a) State Fermat’s Little Theorem.

b) Find the remainder when 51603 is divided by 17.

c¢) In Zj2 find the inverse of the class [5]. Use it to solve in Z;2 the equation [5] - x + [2] = [9].

d) Suppose that ar = b (mod m) and br = a (mod m) . Prove that a®> = b* (mod m) .

Solution: a) Fermat’s Little Theorem: Ifp is a prime number and a is an integer not divisible by p,
then a?~! =1 (mod p) .
An equivalent statement: If p is a prime number and a is an integer, then a? = a (mod p) .

b) Since 17 is a prime number and 5 is not divisible by 17, we have 5'® = 1 (mod 17) by Fermat’s
Little Theorem. Thus
51603 — (516)100 . 53 = 1100 . 53 — 53 (mod 17) .
Furthermore,
53 =125.-5=8-5=40=6 (mod 17) .
Thus 59 =6 (mod 17) . Since 0 < 6 < 17, the remainder when 509 is divided by 17 is equal to 6.



c) Since 5-5 =25=1 (mod 12) , we see that [5][5] = [1], so [5] is its own inverse.

To solve [5]x+[2] = [9] we add —[2] to both sides and get [5]z = [9]—[2] = [9—2] = [7]. Now we multiply
both sides by the multiplicative inverse of [5], which is [5], to get x = [5][5]z = [5][7] = [35] = [11] (as
35 =11 (mod 12) ). Thus =z = [11].

d) By multiplying the congruence ar = b (mod m) by b we get bar = b> (mod m) . Similarly,
multiplying br = a (mod m) by a yields abr = a? (mod m) . Thus a? = b? = abr (mod m) .

Problem 4. a) State the division algorithm.

b) Use Euclid’s algorithm to compute gcd(889,168). Find xz,y € Z such that 889z + 168y =
gcd(889,168) . Be extremely careful with your calculations (and check your answers).

c) State the Fundamental Theorem of Arithmetic and Euclid’s Lemma.
d) Let a be an integer. Prove that the numbers 3a 4+ 5 and 7a + 12 are relatively prime.

e) Let a, b be relatively prime integers. Prove that ged(a,b™) = 1 for every natural number n.

Solution: a) Division Algorithm. Let n € N. For any integer m there exist unique integers k and
r such that m = kn+r and 0 < r < n. The number k is the quotient and r is called the remainder
when m is divided by n.

b) Euclid’s algorithm yields:
889 =5 - 168 + 49,
168 = 3- 49 + 21,
49 =221 47,
21=3-7T+0.
It follows that gcd(889,168) = 7. Working backwards,
7=49-2-21=49—-2-(168 —-3-49) =7-49—2-168 =7- (889 —5-168) —2-168 = 7-889 — 37 - 168.
Thus z =7, y = —37 work.

¢) Fundamental Theorem of Arithmetic. Any integer n > 1 can be written in a unique up to
order way as a product of prime numbers. In other words, n is a product of prime numbers and if
nN=pi...Ps =q1...q, where p1,...,ps,q1,-..,q are primes then s =t and the sequence q1,...,q; s
a permutation of the sequence p1,...,Ds.

Euclid’s Lemma. If p is a prime number and a,b are integers such that plab, then pla or plb.
Note that this can be stated in an equivalent way as follows: if p is a prime, then Z, satisfies the
axiom M4: if vy =0 the x =0 ory =0.

d) It suffices to find integers z,y such that z(7a + 12) + y(3a + 5) = 1. Note that 3(7a + 12) +
(=7)(3a +5) = 1. Thus any common divisor of 3a + 5 and 7a + 12 must divide 1. It follows that
ged(3a +5,7a +12) = 1.

e) I’'st method: Let a = p;...ps and b = ¢ ... ¢ be factorizations of a and b into primes. Since a and
b are relatively prime, the sets of prime divisors of a and b are disjoint (i.e p; # ¢; for all 4, j). But
the primes which appear in prime factorizations of b and b" are the same, so a and b do not share
any primes in their prime factorizations, so they are relatively prime.
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II'nd method: We proceed by induction on n. For n = 1 the result is given. Suppose that for some
n € N the results is true for 1,2,...,n. Then ged(a, b™) = 1 = ged(a,b). There exist integers u, w, s,t
such that ua + wb™ = 1 = sa + tb. Thus 1 = (ua + wb")(sa + tb) = (uas + swb™ + tub)a + (wt)b" 1.
This implies that ged(a,b"!) = 1, so the result holds for n 4+ 1. By the method of induction, the
result holds for all n € N.

III'rd method: Suppose that d > 1 is a common divisor of a¢ and ™. Then d has a prime divisor p and
p is also a common divisor of a and ™. Since p is a prime and p|b", we conclude by Euclid’s Lemma
that p|b. This however means that p is a common divisor of a and b, which contradicts the assumption
that ged(a, b) = 1. The contradiction proves that d does not exist, i.e. ged(a,bd™) = 1.

Problem 5. a) Let R be an ordered field. Define the least upper bound of a subset A of R. State
the completeness axiom.

b) Let R be an ordered field which satisfies completeness axiom. Prove that the subset N of R is not
bounded above.

Solution: a) The least upper bound of a set A is the smallest among all upper bounds of A.
Completeness Axiom. Every non-empty bounded above subset of R has the lest upper bound.

b) The prove is by contradiction. Suppose that N is bounded above. By completeness axiom, N has
the lest upper bound r. Thus, for every n € N we have n + 1 < r (since n 4+ 1 € N). This means that
n < r—1 for all n € N. It follows that » — 1 is an upper bound for N. But » —1 < r and r is the least
upper bound, a contradiction. This proves that N is not bounded above.

Problem 6. Let a,b,c be non-zero integers. Consider the set S = {xa+ yb+ zc: x,y,z € Z}. Prove
that S contains a positive integer d which divides each of a, b, ¢. Conclude that d is the largest
common divisor of a, b, and ¢ and that d is the smallest positive element of S.

Solution: Let e = ged(a, b). Thus there exist integers u, w such that e = ua + wb. Let d = ged(e, ¢).
There exist integers s, t such that d = se+tc. It follows that d = s(ua + wb) +tc = (su)a+ (sw)b+te,
so d € S. By definition of d we have dle and d|c. Since e|a and e|b we get that d|a, d|b, and d|c.
Thus d is a positive element of S which divides each of a, b, c¢. If h is a common divisor of a, b, ¢ then
hl(su)a + (sw)b + tc = d, so h < d. This proves that d is the greatest common divisor of a, b, c. If m
is any element of S then m = xa + yb + zc for some integers x,y, z. It follows that d|m (as d divides
a,b,c). Thus, if m > 0 then m > d. In other words, d is the smallest positive element of S.

Exercise. Generalize this to any number of integers (not necessarily three).



