Exam 1, Math 401
Tuesday, September 25

Problem 1. a) State Fermat’s Little Theorem and Euler’s Theorem.
b) Let m,n be relatively prime positive integers. Prove that

m?™ 4+ ™M =1 (mod mn) .
Problem 2. a) State Chinese Remainder Theorem.
b) Find all positive integers smaller than 200 which leave remainder 1,3,4 upon
division by 3, 5, 7 respectively.
Problem 3. a) Define ged(a,b). Using Euclid’s algorithm compute ged (889, 168)
and find z,y € Z such that ged(889,168) = x - 889 + y - 168 (check your answer).
b) Let a be an integer. Prove that ged(3a + 5,7a + 12) = 1. Hint: If d|u and d|w
then d|su + tw for any integers s, t.
Problem 4. a) Define prime numbers. State the Fundamental Theorem of Arith-

metic. Explain the notation: p*||m.

b) Let n = p{'p3*...p%, where p; < ps < ... < ps are prime numbers. Prove that n is

a perfect square (i.e. n = m? for some integer m) iff a;, as, ..., a, are all even.

¢) Suppose that k - [ is a perfect square and ged(k,l) = 1. Prove that both k and [
are perfect squares.

Problem 5. a) Define quadratic residues and non-residues modulo a prime p. Find
all quadratic residues modulo 11.

b) Suppose that n = a? + b* for some integers a, b. Prove that n # 3 (mod 4) .
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The following problems are optional. You may earn extra points, but work on these

problems only after you are done with the other problems

Problem 6. Prove that n?' = n (mod 30) for every integer n.



Problem 7. Let a > 1, n > 1 be integers.
a) What is the order of @ modulo a™ + 17

b) Prove that 2n|¢(a™ + 1).



