
Solutions to Exam 1

Problem 1. a) State Fermat’s Little Theorem and Euler’s Theorem.

b) Let m, n be relatively prime positive integers. Prove that

mφ(n) + nφ(m) ≡ 1 (mod mn) .

Solution: a)

Fermat’s Little Theorem: Let p be a prime. Then

ap−1 ≡ 1 (mod p)

for any integer a not divisible by p.

Euler’s Theorem: Let n be a positive integer. Then

aφ(n) ≡ 1 (mod n)

for any integer a relatively prime to n.

b) By Euler’s Theorem, mφ(n) ≡ 1 (mod n) . Clearly nφ(n) ≡ 0 (mod n) . Thus

mφ(n) + nφ(n) ≡ 1 (mod n) .

Similarly, nφ(m) ≡ 1 (mod m) and mφ(m) ≡ 0 (mod m) so

mφ(n) + nφ(n) ≡ 1 (mod m) .

In other words, mφ(n) + nφ(n) − 1 is divisible by both m and n. Since m and n

are relatively prime, we conclude that mφ(n) + nφ(n) − 1 is divisible by mn, i.e.

mφ(n) + nφ(n) ≡ 1 (mod mn) .

Problem 2. a) State Chinese Remainder Theorem.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon

division by 3, 5, 7 respectively.

Solution: a)

Chinese Remainder Theorem: Let n1, ..., nk be pairwise relatively prime positive

integers and let N = n1·n2·...·nk. Given integers a1, ..., ak there is integer x such that
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x ≡ ai (mod ni) for i = 1, 2, ..., k. Moreover, an integer y satisfies the congruences

iff N |(x−y) (so all integers satisfying the congruences are given by x+mN , m ∈ Z).

b) The problem asks us to find all integers x such that 0 < x < 200 and

x ≡ 1 (mod 3) , x ≡ 3 (mod 5) , x ≡ 4 (mod 7) .

In order to find a solution to these congruences, we observe that

12 · 3 + (−1) · 35 = 1,

(−4) · 5 + 21 = 1,

(−2) · 7 + 15 = 1.

Thus a solution is given by x = (−35)+3·21+4·15 = 88. It follows that all solutions

are given by the formula x = 88 + 105m, m ∈ Z. We get a positive solution smaller

than 200 only for m = 0, 1, so 88 and 193 are the only solutions to our problem.

Problem 3. a) Define gcd(a, b). Using Euclid’s algorithm compute gcd(889, 168)

and find x, y ∈ Z such that gcd(889, 168) = x · 889 + y · 168 (check your answer).

b) Let a be an integer. Prove that gcd(3a + 5, 7a + 12) = 1. Hint: If d|u and d|w

then d|su + tw for any integers s, t.

Solution: a) gcd(a, b) is the largest positive integer which divides both a and b.

It is the unique positive integer d with the property that div(a) ∩ div(b) = div(d).

We have

889 = 5 · 168 + 49,

168 = 3 · 49 + 21,

49 = 2 · 21 + 7,

21 = 3 · 7 + 0.

By Euclid’s algorithm, gcd(889, 168) = 7. Furthermore,

7 = 49−2·21 = 49−2·(168−3·49) = 7·49−2·168 = 7·(889−5·168)−2·168 = 7·889−37·168.

Thus x = 7, y = −37 works.

b) Note that 3(7a + 12) + (−7)(3a + 5) = 1. Thus any common divisor of 3a + 5

and 7a + 12 must divide 1. It follows that gcd(3a + 5, 7a + 12) = 1.
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Problem 4. a) Define prime numbers. State the Fundamental Theorem of Arith-

metic. Explain the notation: pk||m.

b) Let n = pa1

1 pa2

2 ...pas

s , where p1 < p2 < ... < ps are prime numbers. Prove that n is

a perfect square (i.e. n = m2 for some integer m) iff a1, a2, ..., as are all even.

c) Suppose that k · l is a perfect square and gcd(k, l) = 1. Prove that both k and l

are perfect squares.

Solution: a) A prime number is any integer p > 1 such that div(p) = {1, p}.

Fundamental Theorem of Arithmetic: Any positive integer n > 1 can be

factored in unique way as n = pa1

1 pa2

2 ...pas

s , where p1 < p2 < ... < ps are prime

numbers and a1, ..., as are positive integers.

The notation pk||m means that k is the highest power of p which divides m, i.e.

pk|m but pk+1 - m (or, equivalently, k is the exponent with which p appears in the

prime factorization of m).

b) Suppose that n = m2 is a perfect square. If m = qb1
1 qb2

2 ...qbt

t is a prime factorization

of m then m2 = q2b1
1 q2b2

2 ...q2bt

t is a prime factorization of n = m2. By uniqueness of

factorization, we have s = t, qi = pi and ai = 2bi for i = 1, 2, ..., s. In particular, all

ai’s are even.

Conversely, if all ai’s are even then m = p
a1/2
1 p

a2/2
2 ...p

as/2
s is n integer and n = m2

so n is a perfect square.

c) Let n = kl be a perfect square. Suppose that k is not a perfect square. Then,

by b), there is a prime divisor p of k such that pa||k and a is odd. Since p cannot

divide l, we have pa||n. This however contradicts b), since n is a perfect square (so

for any prime q we have qb||n for some even b).

Problem 5. a) Define quadratic residues and non-residues modulo a prime p. Find

all quadratic residues modulo 11.

b) Suppose that n = a2 + b2 for some integers a, b. Prove that n 6≡ 3 (mod 4) .

Solution: a) An integer a is called a quadratic residue modulo a prime p if

p - a and a ≡ x2 (mod p) for some integer x. An integer a is called a quadratic

non-residue modulo a prime p if there is no integer x such that a ≡ x2 (mod p) .
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We know that a is a quadratic residue modulo p iff a ≡ i2 (mod p) for some i ∈

{1, 2, .., (p − 1)/2}. Since 12 = 1, 22 = 4, 32 = 9, 42 = 16 ≡ 5 (mod 11) , 52 = 25 ≡

3 (mod 11) , an integer a is a quadratic residue modulo 11 iff a is congruent modulo

11 to one of 1, 3, 4, 5, 9.

b) Note that for any integer m we have either m2 ≡ 0 (mod 4) or m2 ≡ 1 (mod 4)

(in fact, m is congruent to one of 0, 1, 2, 3 modulo 4 and 02 ≡ 22 ≡ 0 (mod 4) ,

12 ≡ 32 ≡ 1 (mod 4) ). Thus both a2 ≡ 0, 1 (mod 4) , b2 ≡ 0, 1 (mod 4) . Thus

n = a2 + b2 ≡ 0, 1, 2 (mod 4) , i.e. n 6≡ 3 (mod 4) .

Problem 6. Prove that n21 ≡ n (mod 30) for every integer n.

Solution: Let us note that if p is a prime then nk(p−1)+1 ≡ n (mod p) for any

integer n and any k > 0. In fact, if p|n then both sides are ≡ 0 (mod p) and if p - n

then Femrat’s Little Theorem tells us that np−1 ≡ 1 (mod p) so

nk(p−1)+1 = (np−1)k · n ≡ n (mod p) .

We apply this observation to p = 2, 3, 5. Since 21 = 20 ·(2−1)+1 = 10 ·(3−1)+1 =

5 · (5 − 1) + 1, we have

n21 ≡ n (mod 2) , n21 ≡ n (mod 3) , n21 ≡ n (mod 5) .

In other words, n21 − n is divisible by 2, 3 and 5 and since these numbers are

pairwise relatively prime, n21 − n is divisible by their product 2 · 3 · 5 = 30, i.e.

n21 ≡ n (mod 30)

Problem 7. Let a > 1, n > 1 be integers.

a) What is the order of a modulo an + 1?

b) Prove that 2n|φ(an + 1).

Solution: Recall that if gcd(a, m) = 1 then ordm(a) is the smallest positive

integer s such that as ≡ 1 (mod m) . We have ak ≡ 1 (mod m) iff ordm(a)|k.

a) Clearly gcd(a, an +1) = 1 (any divisor of a is a divisor of an). Let s = ordan+1(a)

be the order of a modulo an +1. Note that s > n since 1 ≤ ai < an +1 for 0 < i ≤ n.

Since an ≡ −1 (mod an + 1) , we have a2n ≡ 1 (mod an + 1) . Thus s|2n. The only

divisor of 2n greater than n is 2n itself, so s = 2n.

4



b) By Euler’s Theorem, we have aφ(an+1) ≡ 1 (mod an + 1) . Thus

ordan+1(a)|φ(an + 1).

Since ordan+1(a) = 2n by a), we see that 2n|φ(an + 1).
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