Solutions to Exam 1

Problem 1. a) State Fermat’s Little Theorem and Euler’s Theorem.

b) Let m,n be relatively prime positive integers. Prove that
m?™ 4+ ™M =1 (mod mn) .

Solution: a)

Fermat’s Little Theorem: Let p be a prime. Then
a’~' =1 (mod p)
for any integer a not divisible by p.
Euler’s Theorem: Let n be a positive integer. Then
a®™ =1 (mod n)
for any integer a relatively prime to n.
b) By Euler’s Theorem, m®™ =1 (mod n) . Clearly n®™ =0 (mod n) . Thus
m?™ + ™ =1 (mod n) .
Similarly, n?'™ =1 (mod m) and m?'™ =0 (mod m) so
m®™ + ™ =1 (mod m) .

In other words, m®™ + n®™ — 1 is divisible by both m and n. Since m and n
are relatively prime, we conclude that m®™ + n®™ — 1 is divisible by mn, i.e.

m?™ 4+ n?™ =1 (mod mn) .

Problem 2. a) State Chinese Remainder Theorem.

b) Find all positive integers smaller than 200 which leave remainder 1,3,4 upon
division by 3, 5, 7 respectively.

Solution: a)
Chinese Remainder Theorem: Let nq, ..., n; be pairwise relatively prime positive

integers and let N = nq-ns-...-ny. Given integers ay, ..., ay there is integer = such that



x = a; (mod n;) fori=1,2,...,k. Moreover, an integer y satisfies the congruences

iff N|(x—y) (so all integers satisfying the congruences are given by x+mN, m € Z).
b) The problem asks us to find all integers = such that 0 < x < 200 and
r=1(mod 3), =3 (mod5), z =4 (mod 7) .
In order to find a solution to these congruences, we observe that
12-34(=1)-35 =1,
(—4)-5421 =1,
(—=2)-7T+15=1.
Thus a solution is given by © = (—35)+3-21+4-15 = 88. It follows that all solutions

are given by the formula z = 88+ 105m, m € Z. We get a positive solution smaller

than 200 only for m = 0,1, so 88 and 193 are the only solutions to our problem.

Problem 3. a) Define ged(a,b). Using Euclid’s algorithm compute ged (889, 168)
and find z,y € Z such that ged(889,168) = x - 889 + y - 168 (check your answer).

b) Let a be an integer. Prove that ged(3a + 5,7a + 12) = 1. Hint: If d|u and d|w

then d|su + tw for any integers s, t.

Solution: a) ged(a, b) is the largest positive integer which divides both a and b.
It is the unique positive integer d with the property that div(a) N div(b) = div(d).
We have
889 = 5- 168 + 49,

168 = 3 -49 4 21,
49=2-21+417,
21=3-7+0.
By Euclid’s algorithm, ged(889,168) = 7. Furthermore,
7 =49-2-21 = 49-2-(168—3-49) = 7-49—2-168 = 7-(889—5-168)—2-168 = 7-889—37-168.
Thus z =7, y = —37 works.

b) Note that 3(7a + 12) + (=7)(3a + 5) = 1. Thus any common divisor of 3a + 5
and 7a + 12 must divide 1. It follows that ged(3a + 5, 7a + 12) = 1.
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Problem 4. a) Define prime numbers. State the Fundamental Theorem of Arith-

metic. Explain the notation: p*||m.

b) Let n = p{'p3?...p%, where p; < ps < ... < ps are prime numbers. Prove that n is

a perfect square (i.e. n = m? for some integer m) iff a;, a, ..., a, are all even.

¢) Suppose that k - [ is a perfect square and ged(k,l) = 1. Prove that both k and [

are perfect squares.

Solution: a) A prime number is any integer p > 1 such that div(p) = {1, p}.
Fundamental Theorem of Arithmetic: Any positive integer n > 1 can be
factored in unique way as n = p{'p52...p%, where p; < py < ... < p, are prime

numbers and aq, ..., as are positive integers.

The notation p®||m means that k is the highest power of p which divides m, i.e.
p*lm but p**1 ¥ m (or, equivalently, k is the exponent with which p appears in the

prime factorization of m).

b1 b2

2is a perfect square. If m = ¢"¢%2...¢"" is a prime factorization

b) Suppose that n = m
of m then m? = qulng?..qtzbt is a prime factorization of n = m?. By uniqueness of
factorization, we have s = t, ¢; = p; and a; = 2b; for « = 1,2, ..., s. In particular, all
a;’s are even.

a1/2 az/2 as/2

Conversely, if all a;’s are even then m = pi"'“py>’"...ps*’" is n integer and n = m?

so n is a perfect square.

c) Let n = kl be a perfect square. Suppose that k is not a perfect square. Then,
by b), there is a prime divisor p of k such that p®||k and a is odd. Since p cannot
divide I, we have p®||n. This however contradicts b), since n is a perfect square (so

for any prime ¢ we have ¢°||n for some even b).

Problem 5. a) Define quadratic residues and non-residues modulo a prime p. Find
all quadratic residues modulo 11.

b) Suppose that n = a? + b* for some integers a, b. Prove that n # 3 (mod 4) .

Solution: a) An integer a is called a quadratic residue modulo a prime p if
pfaand a = 2? (mod p) for some integer z. An integer a is called a quadratic

non-residue modulo a prime p if there is no integer z such that a = x? (mod p) .



We know that a is a quadratic residue modulo p iff a = i (mod p) for some i €
{1,2,..,(p—1)/2}. Since 12 =1,22=4,32=9,4>=16 =5 (mod 11) , 52 = 25 =
3 (mod 11) , an integer a is a quadratic residue modulo 11 iff a is congruent modulo
11 to one of 1,3,4,5,9.

b) Note that for any integer m we have either m? =0 (mod 4) or m? =1 (mod 4)
(in fact, m is congruent to one of 0,1,2,3 modulo 4 and 0> = 22 = 0 (mod 4) ,
12 =32 =1 (mod 4) ). Thus both a> = 0,1 (mod 4) , ¥*> = 0,1 (mod 4) . Thus
n=a>+0"=0,1,2 (mod 4) , i.e. n # 3 (mod 4) .

Problem 6. Prove that n*! = n (mod 30) for every integer n.

Solution: Let us note that if p is a prime then n*®=Y+! = n (mod p) for any
integer n and any k > 0. In fact, if p|n then both sides are = 0 (mod p) andif p{n
then Femrat’s Little Theorem tells us that n?~! =1 (mod p) so

nkP=DHL — (pP=1)k .y = n (mod p) .

We apply this observation to p = 2,3,5. Since 21 =20-(2—1)+1=10-(3—1)+1=
5-(5—1)+ 1, we have

n*' =n (mod 2) , n*' =n (mod 3) , n*' =n (mod 5) .
In other words, n?' — n is divisible by 2, 3 and 5 and since these numbers are
pairwise relatively prime, n?' — n is divisible by their product 2 -3 -5 = 30, i.e.
n* = n (mod 30)

Problem 7. Let a > 1, n > 1 be integers.
a) What is the order of @ modulo a™ + 17

b) Prove that 2n|¢(a™ + 1).
Solution: Recall that if ged(a,m) = 1 then ord,,(a) is the smallest positive

integer s such that a® = 1 (mod m) . We have a* =1 (mod m) iff ord,,(a)|k.

a) Clearly ged(a,a™+1) = 1 (any divisor of a is a divisor of a™). Let s = ordgn1(a)
be the order of @ modulo a”+1. Note that s > nsince 1 < a* < a"+1for 0 < i < n.
Since a" = —1 (mod a" + 1) , we have " = 1 (mod a" + 1) . Thus s|2n. The only

divisor of 2n greater than n is 2n itself, so s = 2n.
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b) By Euler’s Theorem, we have a?@" 1) =1 (mod a” + 1) . Thus
Ordan+1(a)|¢(axn + ].)

Since ordg»11(a) = 2n by a), we see that 2n|¢(a™ + 1).



