Solutions to Exam 2

Problem 1. a) Define prime and irreducible elements in an integral domain R. (5

points)
b) Let I, J be ideals of a ring R. Define I + J and I.J. (5 points)

c) Define < ay, ..., ar, >, where ay, ..., a; are elements of a ring R. Define Noetherian

ring. (5 poinst)
d) State the First Isomorphism Theorem (5 points)

e) Define an Euclidean domain. Define unique factorization domain. (6 points)

Solution: A non-zero element a € R is called irreducible if ¢ is non-invertible
and whenever a = xy for some x,y € R, either x or y is invertible in R. Equivalently,
a # 0 is irreducible if aR is maximal among all proper principal ideals.

A non-zero element a € R is called prime if a is non-invertible and whenever

alry then a|z or aly. Equivalently, a # 0 is prime iff aR is a prime ideal.

b) Let I, J be ideals of a ring R. Then

I+J={i+j:iel, jeJ}

In other words, z € I + J iff x can be expressed as ¢ + j for some choice of ¢ € [
and j € J.
The ideal I.J is defined as

1J = {'éljl —Figjg + ... +Zm]m tm e N, il,iz,...,'ém € ], jl, ...,jm € J}

Thus, x € IJ if there is a positive integer m and elements i1, %9, ..., 0, € I, j1, ..., jm €

J SUCh that xr = i1j1 + igjz + ...+ Zm]m

c) Let ay, ..., ar be elements of a ring R. Then the ideal < ay, ..., ax > generated by

ai, ..., a is defined as
< Q1y...,Q >= {7"1@1 + 1roao + ... +TRaK 1T, T2, ..., Tk € R}

In other words, x €< aq,...,a; > iff x can be expressed as ria; + roas + ... + rrag

for some choice of r1,7ro,...,7. € R.



A ring is Noetherian if every ideal of R is finitely generated. This means that
every ideal of R is of the form < aq,...,a; > for some £ € N and some elements

ai,...,a in R.

d) First Isomorphism Theorem: Let f: R — S be a homomorphism of rings.
Set I = ker f. The image f(R) is a subring of S and the map g : R/I — f(S)
defined by g(r + I) = f(r) is an isomorphism.

e) An integral domain R is called an Euclidean domain if there exists a function
f:R—{0} — {0,1,2,3,...} such that for any x,y € R, x # 0 there are z,7 € R
such that y = zz + r and either f(r) < f(z) or r = 0.

An integral domain R is called a UFD (unique factorization domain) if every
non-zero, non-invertible element of R can be expressed as a product of irreducible
elements and any two such factorizations are equivalent. Two factorizations z =
ai...a,, = by...b, are equivalent if m = n and there is a permutation m of the set
{1,2,...,m} such that a; and b,(; are associated for i = 1,2,...,m. Two elements

a,b of R are associated if a = bu for some invertible element u.

Problem 2. a) Define an ideal in a ring R. Define a prime ideal. Define principal

ideal. (7 points)

b) Let R be a commutative ring and let @ € R. Set ann(a) = {r € R: ra = 0} (this

set is called the annihilator of a). Prove that ann(a) is an ideal in R. (6 points)

c) Let R = Z/24 and let a = 20. Find the ideal ann(a) (it should be of the form
mZ/24 for some divisor m of 24). (6 points)

d) Let P be a prime ideal in a commutative ring R. Suppose that a € R but a &€ P.
Prove that ann(a) C P. (6 points)

Solution: a) A non-empty subset I of a ring R is called ideal if it has the

following two properties:
1. a—bel for any a,b € R.
2. ar € I and ra € I for any r € R and any a € I.

A subset [ is an ideal iff I = ker f for some homomorphism f: R — S.



An ideal I of a commutative ring R is called prime if R/ is a domain. Equiv-
alently, I is prime iff whenever ab € I for some a,b € R, then either a € I or
bel.

An ideal I of a commutative ring R is called principal if R =< a > (or equiva-

lently, R = aR) for some a € R.

b) Suppose that z,y € ann(a) and r € R. Then za = 0 = ya. It follows that
(x —y)a=za —ya=0sox—y € ann(a). Furthermore, (rx)a =r(zxa) =7-0=0,

so rx € ann(a). This proves that ann(a) is an ideal.

c) Note that b € ann(20) iff b-20 = 0 in the ring Z/24, i.e. iff 24|20b. This is
equivalent to 6|50 and also to 6|b, since ged(5,6) = 1. It follows that ann(20) =
62,/24 = {0,6,12,18}.

d) Let P be a prime ideal of R and suppose that a ¢ P. If r € ann(a) then
ra =0 € P. Since P is prime, either a € P or r € P. But a € P, so we must have
r € P. This proves that every element of ann(a) belongs to P, i.e. ann(a) C P.

Problem 3. a) State the Division Algorithm for polynomials. Explain how does

this result imply that polynomial rings over fields are Euclidean domains. (8 points)

b) Find a greatest common divisor of the polynomials p = 2% + 2 + 23 + 2?2 + 2z + 1

and ¢ = 3 — 1 in Q[z]. (7 points)

¢) Which of the polynomials x* 44, 23+ +1, 22 +3 in F5[z] are irreducible? Justify
your answer. Factor each of these polynomials into irreducible factors. (Here [ is
the field Z/5). (10 points)

Solution: a) Division Algorithm. Let R be a ring and let f € R[z] be a
polynomial whose leading coefficient is invertible. For any polynomial g € R[z]

there are polynomials h,r € R|x] such that g = hf +r and degr < deg f.

If K is a field then every non-zero polynomial has invertible leading coefficient. It
follows from the division algorithm that the degree function deg on K[z]—{0} makes

K[z] an Euclidean domain.



b) Division of p by ¢ yields
Pttt v+ 1= (@t +1)(2® - 1)+ (22° + 22+ 2).

Division of 22 — 1 by 222 + 2x + 2 yields
1

1
1= (535 - 5)(21:2 + 27 + 2).

Thus 222 + 22 + 2 is a greatest common divisor of p and g¢.

Remark. Here is a solution which uses particular features of the polynomials
involved. Note that (x — 1)p=2°—-1=(2*-1)(2*+1) = (x - 1)(2* + 2+ 1)(z +
1)(z* — z +1). Tt follows that p = (z + 1)(2? — z + 1)(2* + z + 1) is an irreducible
factorization of p. Irreducible factorization of ¢ is ¢ = (z — 1)(z* +x + 1). It is now
clear that 72 + z + 1 is a greatest common divisor of p and ¢. (Note that 2> +z + 1

and 222 + 2z + 2 are associated so there is no contradiction here.

c¢) Note that 1 is a root of z* + 4 (recall that we work over the field F5). Thus
r+ (=1) = z + 4 is a factor of ! + 4 and by division we find that z! + 4 =
(r +4)(2® + 22+ 2 +1). Note that —1 = 4 is a root of 3 + 2% + x + 1. Division
algorithm yields 3 + 2? + z + 1 = (z 4+ 1)(z* + 1). Now 2 is a root of 2? + 1 and
2+ 1= (x+3)(xr +2). Wesee that 2* +4 = (z + 1)(z + 2)(z + 3)(z + 4) is an

irreducible factorization.

Remark: Note that 2* + 4 = 2* — 1 and by Fermat’s Little Theorem 1,2, 3,4 are
roots of z* — 1, se we get right away that 2* + 4 = (z + 1)(z + 2)(z + 3)(z + 4).

By direct verification we se that neither 2% + 2 4+ 1 nor 22 + 3 have a root in F5. It

follows that both of these polynomials are irreducible.

Problem 4. a) Let R be PID. Consider two elements a,b € R. Since R is a PID,
there is d € R such that aRNbR = dR. Prove that for any ¢ € R we have d|c iff a|c
and b|c. What would be appropriate name for d? (12 points)

b) Let R = Z[v6] = {a +bV6 : a,b € Z}. Consider the ideal I =< 2,1/6 >. Prove
that I and 1+ I are different cosets of I in R. Prove that these are the only cosets.
What can you say about R/I? (12 points)



Solution: a) Note that dR C aR and dR C bR so a|d and b|d. Suppose that
d|c. Then clearly alc and b|c. Conversely, if a|c and b|c then ¢cR C aR and ¢cR C bR
so cR CaRNbR = dR. Tt follows that d|c.

In analogy with the integers, d should be called a least common multiple of a
and b.

b) The claim that I = 0+ I and 1 + I are different is equivalent to saying that
1 ¢ I. Note that elements of I are of the form 2(a + bv/6) + V6(c + dv6) =
(2a + 6d) + (2b+ ¢)v/6. None of these elements can be equal to 1 since 1 is odd and
2a + 6d is even. Thus indeed 1 ¢ I and therefore I # 1+ I.

Let (a+bv/6) + 1 be a coset of I. If a = 2cis even then a+bv/6 = c-2+bv/6 € 1
so (a4+bv6)+I=1.Ifa=2c+11is odd then (a+bv6) —1=c-2+bV/6 € I so
(a+by6)+1=1+1. Thus I and 1+ I are the only cosets of I. It follows that
R/I = {0,1} is isomorphic to the field Fy with two elements.

Problem 5. Let R = {a + by/~2 : a,b € Z}. Define N(a + b\/=2) = a? + 21?
(so N is just the square of the absolute value of the complex number a + by/—2.
Suppose that 0 # = a + by/—2 and y = ¢ + d/—2 are elements of R. Prove that
the complex number y/z can be expressed as s + ty/—2 for some rational numbers

s,t. Use N to prove that R is Euclidean. (10 points)

Solution: a) The first claim follows from the following computation

y _c+tdy=2 (c+dv-2)(a—by-2) ac+2bd+ (ad—bc)y—2 _
T oa+by/=2 (a+b/=2)(a—b/=2) a? 4 202 B
ac+2bd  ad— bc
- V2 =s5+1v/—2
A2 aP+ 20 SHVE
where s = (ac + 2bd)/(a* + 20?), t = (ad — bc) /(a® + 2b?) are rational numbers.
There are integers k, m such that |s — k| < 1/2and [t —m| < 1/2. Set p=s—k

and g =t —m. Thus y/x = (k+1v/—2) + (p + ¢vV/—2). In other words,

y=(k+1V=2)z+ (p+q/—2)z.

Clearly, k +1v/—2 € Rsor = (p+qv—2)r = y— (k+1v/—2)r € R. Thus
y=(k+1v/=2)x +r and

N(r)=N((p+qV=2)z) = N(p+ qvV—2)N(z) = (p* + 2¢°)N(z).
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Since |p| < 1/2 and |¢| < 1/2, we have p* + 2¢*> < 1/4+2-(1/4) < 3/4. Thus
N(r) <3N(z)/4 < N(x). This shows that N is an Euclidean function on R and R

is an Fuclidean domain.

Problem 6. Let R = Z[\/—3] = {a + bv/—3 : a,b € Z} (so this ring is a subring of

the Eisenstein integers).
a) Prove that 1, —1 are the only invertible elements in R. (5 points)

b) Prove that 2, 1 +1/—3, 1 — /=3 are irreducible in R. Conclude that R is not
UFD (find 2 inequivalent factorizations of 4). (5 points)

c) Prove that the ideal I =< 2,1 + /=3 > of R is not principal and that it is
maximal. (5 points)

Solution: Define N(a + b\/=3) = a® + 3b%, so N(z) is just the square of the
absolute value of the complex number z. It follows that N(zy) = N(z)N(y).

a) Suppose that = a + bv/—6 € R is invertible. Then zy = 1 for some y € R.
It follows that 1 = N(1) = N(zy) = N(x)N(y). Since N(x) and N(y) are positive
integers, we must have N(z) =1 = N(y). Thus a®+6b* = 1. Since a, b are integers,
we must have b = 0 and a® = 1, i.e. = £1. This shows that 1 and —1 are the only

invertible elements of R.

b) Note that if 0 # 2 = a + by/—3 is not invertible then either |a| > 1 or b # 0. It
follows that N(z) = a*+3b* > 3. Tt follows that if z € R is not invertible and is not
irreducible then z = zy for some non-invertible x,y € R and N(z) = N(x)N(y) >
3-3=29. In other words, if 1 < N(z) < 9 then z is irreducible. Since N(2) = 4,
N(1++/=3) =4 and N(1—+/=3) = 4, all three elements 2, 1 ++/—3, 1 — /=3 are
irreducible in R. Note that 4 = 2-2 = (1++/—3)(1—+/=3). Since 1, —1 are the only
invertible elements of R, no two of the elements 2, 1++/—3, 1 — /=3 are associated
and therefore 4 has two inequivalent factorizations into irreducible elements. Thus

Risnot a UFD.

c¢) First note that I is a proper ideal. In fact, elements of I are of the form 2(a +
bv/=3) + (14++v/=3)(c+dv/=3) = (2a+c—3d) + (2b+c+d)+/6. If I was not proper,

then we would have 1 € I and therefore there would exists integers a, b, ¢, d such that
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2a+c—3d =1 and 2b+c+d = 0. This would imply that 1 = 140 = 2a+2b0+2c—2d
is even, which is clearly false. This shows that [ is a proper ideal.

Note now that 2 is irreducible by b). Thus 2R is maximal among proper principal
ideals of R. Since I is proper and strictly contains 2R, it can not be principal.

Note that Z + I = R, since a + by/—3 = (a — b) + b(1 + /=3 € Z + [ for any
a,b € Z. Now Z NI is a proper ideal of Z (it is proper since it does not contain
1). Clearly 2 € ZN 1, so 2Z C Z N 1. Since 27Z is a maximal ideal of Z we must
have 2Z = Z N I. By the third isomorphism theorem, the rings Z/2Z and R/I are
isomorphic. Since Z /27 is a filed, R/I is a filed too and consequently [ is a maximal
ideal.



