
Solutions to Exam 2

Problem 1. a) Define prime and irreducible elements in an integral domain R. (5

points)

b) Let I, J be ideals of a ring R. Define I + J and IJ . (5 points)

c) Define < a1, ..., ak >, where a1, ..., ak are elements of a ring R. Define Noetherian

ring. (5 poinst)

d) State the First Isomorphism Theorem (5 points)

e) Define an Euclidean domain. Define unique factorization domain. (6 points)

Solution: A non-zero element a ∈ R is called irreducible if a is non-invertible

and whenever a = xy for some x, y ∈ R, either x or y is invertible in R. Equivalently,

a 6= 0 is irreducible if aR is maximal among all proper principal ideals.

A non-zero element a ∈ R is called prime if a is non-invertible and whenever

a|xy then a|x or a|y. Equivalently, a 6= 0 is prime iff aR is a prime ideal.

b) Let I, J be ideals of a ring R. Then

I + J = {i + j : i ∈ I, j ∈ J}.

In other words, x ∈ I + J iff x can be expressed as i + j for some choice of i ∈ I

and j ∈ J .

The ideal IJ is defined as

IJ = {i1j1 + i2j2 + ... + imjm : m ∈ N, i1, i2, ..., im ∈ I, j1, ..., jm ∈ J}.

Thus, x ∈ IJ if there is a positive integer m and elements i1, i2, ..., im ∈ I, j1, ..., jm ∈
J such that x = i1j1 + i2j2 + ... + imjm.

c) Let a1, ..., ak be elements of a ring R. Then the ideal < a1, ..., ak > generated by

a1, ..., ak is defined as

< a1, ..., ak >= {r1a1 + r2a2 + ... + rkak : r1, r2, ..., rk ∈ R}.

In other words, x ∈< a1, ..., ak > iff x can be expressed as r1a1 + r2a2 + ... + rkak

for some choice of r1, r2, ..., rk ∈ R.
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A ring is Noetherian if every ideal of R is finitely generated. This means that

every ideal of R is of the form < a1, ..., ak > for some k ∈ N and some elements

a1, ..., ak in R.

d) First Isomorphism Theorem: Let f : R −→ S be a homomorphism of rings.

Set I = ker f . The image f(R) is a subring of S and the map g : R/I −→ f(S)

defined by g(r + I) = f(r) is an isomorphism.

e) An integral domain R is called an Euclidean domain if there exists a function

f : R − {0} −→ {0, 1, 2, 3, ...} such that for any x, y ∈ R, x 6= 0 there are z, r ∈ R

such that y = zx + r and either f(r) < f(x) or r = 0.

An integral domain R is called a UFD (unique factorization domain) if every

non-zero, non-invertible element of R can be expressed as a product of irreducible

elements and any two such factorizations are equivalent. Two factorizations x =

a1...am = b1...bn are equivalent if m = n and there is a permutation π of the set

{1, 2, ...,m} such that ai and bπ(i) are associated for i = 1, 2, ...,m. Two elements

a, b of R are associated if a = bu for some invertible element u.

Problem 2. a) Define an ideal in a ring R. Define a prime ideal. Define principal

ideal. (7 points)

b) Let R be a commutative ring and let a ∈ R. Set ann(a) = {r ∈ R : ra = 0} (this

set is called the annihilator of a). Prove that ann(a) is an ideal in R. (6 points)

c) Let R = Z/24 and let a = 20. Find the ideal ann(a) (it should be of the form

mZ/24 for some divisor m of 24). (6 points)

d) Let P be a prime ideal in a commutative ring R. Suppose that a ∈ R but a 6∈ P .

Prove that ann(a) ⊆ P . (6 points)

Solution: a) A non-empty subset I of a ring R is called ideal if it has the

following two properties:

1. a − b ∈ I for any a, b ∈ R.

2. ar ∈ I and ra ∈ I for any r ∈ R and any a ∈ I.

A subset I is an ideal iff I = ker f for some homomorphism f : R −→ S.
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An ideal I of a commutative ring R is called prime if R/I is a domain. Equiv-

alently, I is prime iff whenever ab ∈ I for some a, b ∈ R, then either a ∈ I or

b ∈ I.

An ideal I of a commutative ring R is called principal if R =< a > (or equiva-

lently, R = aR) for some a ∈ R.

b) Suppose that x, y ∈ ann(a) and r ∈ R. Then xa = 0 = ya. It follows that

(x − y)a = xa − ya = 0 so x − y ∈ ann(a). Furthermore, (rx)a = r(xa) = r · 0 = 0,

so rx ∈ ann(a). This proves that ann(a) is an ideal.

c) Note that b ∈ ann(20) iff b · 20 = 0 in the ring Z/24, i.e. iff 24|20b. This is

equivalent to 6|5b and also to 6|b, since gcd(5, 6) = 1. It follows that ann(20) =

6Z/24 = {0, 6, 12, 18}.

d) Let P be a prime ideal of R and suppose that a 6∈ P . If r ∈ ann(a) then

ra = 0 ∈ P . Since P is prime, either a ∈ P or r ∈ P . But a 6∈ P , so we must have

r ∈ P . This proves that every element of ann(a) belongs to P , i.e. ann(a) ⊆ P .

Problem 3. a) State the Division Algorithm for polynomials. Explain how does

this result imply that polynomial rings over fields are Euclidean domains. (8 points)

b) Find a greatest common divisor of the polynomials p = x5 + x4 + x3 + x2 + x + 1

and q = x3 − 1 in Q[x]. (7 points)

c) Which of the polynomials x4+4, x3+x+1, x2+3 in F5[x] are irreducible? Justify

your answer. Factor each of these polynomials into irreducible factors. (Here F5 is

the field Z/5). (10 points)

Solution: a) Division Algorithm. Let R be a ring and let f ∈ R[x] be a

polynomial whose leading coefficient is invertible. For any polynomial g ∈ R[x]

there are polynomials h, r ∈ R[x] such that g = hf + r and deg r < deg f .

If K is a field then every non-zero polynomial has invertible leading coefficient. It

follows from the division algorithm that the degree function deg on K[x]−{0} makes

K[x] an Euclidean domain.
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b) Division of p by q yields

x5 + x4 + x3 + x2 + x + 1 = (x2 + x + 1)(x3 − 1) + (2x2 + 2x + 2).

Division of x3 − 1 by 2x2 + 2x + 2 yields

x3 − 1 = (
1

2
x − 1

2
)(2x2 + 2x + 2).

Thus 2x2 + 2x + 2 is a greatest common divisor of p and q.

Remark. Here is a solution which uses particular features of the polynomials

involved. Note that (x− 1)p = x6 − 1 = (x3 − 1)(x3 + 1) = (x− 1)(x2 + x + 1)(x +

1)(x2 − x + 1). It follows that p = (x + 1)(x2 − x + 1)(x2 + x + 1) is an irreducible

factorization of p. Irreducible factorization of q is q = (x− 1)(x2 + x + 1). It is now

clear that x2 + x + 1 is a greatest common divisor of p and q. (Note that x2 + x + 1

and 2x2 + 2x + 2 are associated so there is no contradiction here.

c) Note that 1 is a root of x4 + 4 (recall that we work over the field F5). Thus

x + (−1) = x + 4 is a factor of x4 + 4 and by division we find that x4 + 4 =

(x + 4)(x3 + x2 + x + 1). Note that −1 = 4 is a root of x3 + x2 + x + 1. Division

algorithm yields x3 + x2 + x + 1 = (x + 1)(x2 + 1). Now 2 is a root of x2 + 1 and

x2 + 1 = (x + 3)(x + 2). We see that x4 + 4 = (x + 1)(x + 2)(x + 3)(x + 4) is an

irreducible factorization.

Remark: Note that x4 + 4 = x4 − 1 and by Fermat’s Little Theorem 1, 2, 3, 4 are

roots of x4 − 1, se we get right away that x4 + 4 = (x + 1)(x + 2)(x + 3)(x + 4).

By direct verification we se that neither x3 + x + 1 nor x2 + 3 have a root in F5. It

follows that both of these polynomials are irreducible.

Problem 4. a) Let R be PID. Consider two elements a, b ∈ R. Since R is a PID,

there is d ∈ R such that aR∩ bR = dR. Prove that for any c ∈ R we have d|c iff a|c
and b|c. What would be appropriate name for d? (12 points)

b) Let R = Z[
√

6] = {a + b
√

6 : a, b ∈ Z}. Consider the ideal I =< 2,
√

6 >. Prove

that I and 1 + I are different cosets of I in R. Prove that these are the only cosets.

What can you say about R/I? (12 points)
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Solution: a) Note that dR ⊆ aR and dR ⊆ bR so a|d and b|d. Suppose that

d|c. Then clearly a|c and b|c. Conversely, if a|c and b|c then cR ⊆ aR and cR ⊆ bR

so cR ⊆ aR ∩ bR = dR. It follows that d|c.
In analogy with the integers, d should be called a least common multiple of a

and b.

b) The claim that I = 0 + I and 1 + I are different is equivalent to saying that

1 6∈ I. Note that elements of I are of the form 2(a + b
√

6) +
√

6(c + d
√

6) =

(2a + 6d) + (2b + c)
√

6. None of these elements can be equal to 1 since 1 is odd and

2a + 6d is even. Thus indeed 1 6∈ I and therefore I 6= 1 + I.

Let (a+ b
√

6)+ I be a coset of I. If a = 2c is even then a+ b
√

6 = c ·2+ b
√

6 ∈ I

so (a + b
√

6) + I = I. If a = 2c + 1 is odd then (a + b
√

6) − 1 = c · 2 + b
√

6 ∈ I so

(a + b
√

6) + I = 1 + I. Thus I and 1 + I are the only cosets of I. It follows that

R/I = {0, 1} is isomorphic to the field F2 with two elements.

Problem 5. Let R = {a + b
√
−2 : a, b ∈ Z}. Define N(a + b

√
−2) = a2 + 2b2

(so N is just the square of the absolute value of the complex number a + b
√
−2.

Suppose that 0 6= x = a + b
√
−2 and y = c + d

√
−2 are elements of R. Prove that

the complex number y/x can be expressed as s + t
√
−2 for some rational numbers

s, t. Use N to prove that R is Euclidean. (10 points)

Solution: a) The first claim follows from the following computation

y

x
=

c + d
√
−2

a + b
√
−2

=
(c + d

√
−2)(a − b

√
−2)

(a + b
√
−2)(a − b

√
−2)

=
ac + 2bd + (ad − bc)

√
−2

a2 + 2b2
=

=
ac + 2bd

a2 + 2b2
+

ad − bc

a2 + 2b2

√
−2 = s + t

√
−2,

where s = (ac + 2bd)/(a2 + 2b2), t = (ad − bc)/(a2 + 2b2) are rational numbers.

There are integers k,m such that |s− k| ≤ 1/2 and |t−m| ≤ 1/2. Set p = s− k

and q = t − m. Thus y/x = (k + l
√
−2) + (p + q

√
−2). In other words,

y = (k + l
√
−2)x + (p + q

√
−2)x.

Clearly, k + l
√
−2 ∈ R so r = (p + q

√
−2)x = y − (k + l

√
−2)x ∈ R. Thus

y = (k + l
√
−2)x + r and

N(r) = N((p + q
√
−2)x) = N(p + q

√
−2)N(x) = (p2 + 2q2)N(x).
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Since |p| ≤ 1/2 and |q| ≤ 1/2, we have p2 + 2q2 ≤ 1/4 + 2 · (1/4) ≤ 3/4. Thus

N(r) ≤ 3N(x)/4 < N(x). This shows that N is an Euclidean function on R and R

is an Euclidean domain.

Problem 6. Let R = Z[
√
−3] = {a + b

√
−3 : a, b ∈ Z} (so this ring is a subring of

the Eisenstein integers).

a) Prove that 1,−1 are the only invertible elements in R. (5 points)

b) Prove that 2, 1 +
√
−3, 1 −

√
−3 are irreducible in R. Conclude that R is not

UFD (find 2 inequivalent factorizations of 4). (5 points)

c) Prove that the ideal I =< 2, 1 +
√
−3 > of R is not principal and that it is

maximal. (5 points)

Solution: Define N(a + b
√
−3) = a2 + 3b2, so N(x) is just the square of the

absolute value of the complex number x. It follows that N(xy) = N(x)N(y).

a) Suppose that x = a + b
√
−6 ∈ R is invertible. Then xy = 1 for some y ∈ R.

It follows that 1 = N(1) = N(xy) = N(x)N(y). Since N(x) and N(y) are positive

integers, we must have N(x) = 1 = N(y). Thus a2 +6b2 = 1. Since a, b are integers,

we must have b = 0 and a2 = 1, i.e. x = ±1. This shows that 1 and −1 are the only

invertible elements of R.

b) Note that if 0 6= x = a + b
√
−3 is not invertible then either |a| > 1 or b 6= 0. It

follows that N(x) = a2 +3b2 ≥ 3. It follows that if z ∈ R is not invertible and is not

irreducible then z = xy for some non-invertible x, y ∈ R and N(z) = N(x)N(y) ≥
3 · 3 = 9. In other words, if 1 < N(z) < 9 then z is irreducible. Since N(2) = 4,

N(1 +
√
−3) = 4 and N(1−

√
−3) = 4, all three elements 2, 1 +

√
−3, 1−

√
−3 are

irreducible in R. Note that 4 = 2 ·2 = (1+
√
−3)(1−

√
−3). Since 1, −1 are the only

invertible elements of R, no two of the elements 2, 1+
√
−3, 1−

√
−3 are associated

and therefore 4 has two inequivalent factorizations into irreducible elements. Thus

R is not a UFD.

c) First note that I is a proper ideal. In fact, elements of I are of the form 2(a +

b
√
−3)+(1+

√
−3)(c+d

√
−3) = (2a+c−3d)+(2b+c+d)

√
6. If I was not proper,

then we would have 1 ∈ I and therefore there would exists integers a, b, c, d such that
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2a+c−3d = 1 and 2b+c+d = 0. This would imply that 1 = 1+0 = 2a+2b+2c−2d

is even, which is clearly false. This shows that I is a proper ideal.

Note now that 2 is irreducible by b). Thus 2R is maximal among proper principal

ideals of R. Since I is proper and strictly contains 2R, it can not be principal.

Note that Z + I = R, since a + b
√
−3 = (a − b) + b(1 +

√
−3 ∈ Z + I for any

a, b ∈ Z. Now Z ∩ I is a proper ideal of Z (it is proper since it does not contain

1). Clearly 2 ∈ Z ∩ I, so 2Z ⊆ Z ∩ I. Since 2Z is a maximal ideal of Z we must

have 2Z = Z ∩ I. By the third isomorphism theorem, the rings Z/2Z and R/I are

isomorphic. Since Z/2Z is a filed, R/I is a filed too and consequently I is a maximal

ideal.
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