Exam 3, Math 401
Tuesday, November 27

Problem 1. In the group Sy let a =
498173265

123456789)

a) Write a as a product of disjoint cycles. (3 points)

b) Find the order of a. (2 points)

c¢) Compute a(2,5,3,7,4)a"!. (3 points)

d) Write a as a product of transpositions. (3 points)

e) Is a even or odd? (2 points)

f) Is there an element of order 16 in So? Explain your answer. (3 points)

g) Let b = a®. Write b as a product of disjoint cycles. List all elements of < b >. Is
< b > a normal subgroup? (4 points)

Problem 2. a) Prove that any 2 elements of order 3 in S5 are conjugate. Is the
same true for Sg7 Hint: What can you say about elements of order 3 in S57 (7

points)

b) Suppose that a subgroup H of Sg contains o = (1,6) and 7 = (2, 3,4,5,6). Prove
that H = Sg. Hint: What is (1,4)(1,7)(1,7)? (7 points)

Problem 3. a) Define a normal subgroup of a group G (7 points).

b) Let H and K be normal subgroups of a group G. Prove that ifa € K and b € H

then aba='b~! € K N H. Conclude that if K N H = {e} then every element of K

commutes with every element of H. (7 points)

c) Suppose that the set N = {a € G : a® = e} is a subgroup of a group G. Prove
that it is a normal subgroup. (7 points)
Problem 4. a) State Lagrange’s Theorem. (8 points)

b) The group S; can be considered as the group of all permutations of vertices

1,2,3,4 of a square (numbered counterclockwise). It contains as a subgroup the



dihedral group Dg of order 8 (which consists of those permutations which are isome-
tries; thus 7' = (1,2,3,4) and S = (2,4)). What is the index [S; : Dg]? Prove that

Dy is not normal in S47 (7 points)

¢) Let G be a finite group with a normal subgroup N and a subgroup H such that
ged(|H|, [G : N]) = 1. Prove that H C N. Hint: Either use the Third Isomorphism

Theorem or study the canonical homomorphism G — G/N. (7 points)
Problem 5. a) State the First Isomorphism Theorem for groups. (8points)

b) Let G =< g > be a cyclic group of order n. For each integer m define a map
fm G — G by fm(a’) =a™.

1. Prove that f,, is a homomorphism. (5 points)
2. Prove that f,, is an automorphism iff ged(m,n) =1 (5 points)

3. Find the kernel and the image of fs when n = 12. (5 points)
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The following problems are optional. You may earn extra points, but work on these

problems only after you are done with the other problems

Problem 6. a) Prove that if n > 3 then S,, has no normal subgroups of order 2.

b) Let n > 5. Prove that if N is a normal subgroup of S, then N = {e}, N = A,
or N = S,,. Hint: Note that N N A,, is normal in A,,.

Problem 7. In Problem 4b) above list all elements of DgN A4. Prove that the non-
trivial elements of Dg N A, are exactly the permutations of S; which are products
of two disjoint transpositions. Conclude that Dg N Ay is normal in Sy. Consider the
subset F' of Sy which consists of all permutations which take 1 to 1. Prove that F'
is a subgroup of Sy and it is isomorphic to S3. Prove that F N (Dg N Ay) = {e}.
Conclude that Sy/(Ds N Ay) is isomorphic to S.



