Solutions to Exam 3

Problem 1. In the group S_9 let $a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 9 & 8 & 1 & 7 & 3 & 2 & 6 & 5 \end{pmatrix}$.

- a) Write a as a product of disjoint cycles. (3 points)
- b) Find the order of a. (2 points)
- c) Compute $a(2, 5, 3, 7, 4)a^{-1}$. (3 points)
- d) Write a as a product of transpositions. (3 points)
- e) Is a even or odd? (2 points)
- f) Is there an element of order 16 in S_9 ? Explain your answer. (3 points)

g) Let $b = a^2$. Write b as a product of disjoint cycles. List all elements of $\langle b \rangle$. Is $\langle b \rangle$ a normal subgroup? (4 points)

Solution: a) a = (1, 4)(2, 9, 5, 7)(3, 8, 6).

b) The order of a is equal to lcm(2, 4, 3) = 12.

c) $a(2,5,3,7,4)a^{-1} = (a(2), a(5), a(3), a(7), a(4)) = (9,7,8,2,1).$

d) Since (2, 9, 5, 7) = (2, 7)(2, 5)(2, 9) and (3, 8, 6) = (3, 6)(3, 8), we have

a = (1, 4)(2, 7)(2, 5)(2, 9)(3, 6)(3, 8).

e) Since a is a product of 6 transpositions, it is even.

f) Recall that the order of a permutation τ is the least common multiple of the lengths of the cycles in the cycle decomposition of τ . Note that if a least common multiple of some integers is 16 then one of the integers must be equal to 16 (this is true for any prime power in place of 16). Thus a permutation of order 16 must have at least one cycle of length 16 but S_9 does not have cycles of length larger than 9. Thus there is non element of order 16 in S_9 .

g) We have $b = a^2 = (1,4)^2 (2,9,5,7)^2 (3,8,6)^2 = (2,5)(9,7)(3,6,8)$. Now $b^2 = (3,8,6), b^3 = (2,5)(9,7), b^4 = (3,6,8), b^5 = (2,5)(9,7)(3,8,6)$ and $b^6 = e$ is the

identity. Thus $\langle b \rangle = \{e, b, b^2, b^3, b^4, b^5\}$. It is not a normal subgroup, since $(3, 8, 6) = b^2 \in \langle b \rangle$ but $(3, 1)(3, 8, 6)(3, 1)^{-1} = (1, 8, 6) \notin \langle b \rangle$.

Problem 2. a) Prove that any 2 elements of order 3 in S_5 are conjugate. Is the same true for S_6 ? Hint: What can you say about elements of order 3 in S_5 ? (7 points)

b) Suppose that a subgroup H of S_6 contains $\sigma = (1, 6)$ and $\tau = (2, 3, 4, 5, 6)$. Prove that $H = S_6$. Hint: What is (1, i)(1, j)(1, i)? (7 points)

Solution: a) In general, a permutation of prime order p is a product of disjoint p-cycles. Thus an element of order 3 in S_5 is a product of disjoint 3-cycles. Since 6 > 5, only one three cycle can be present, so an element of order 3 in S_5 is a 3-cycle. We know that any two 3-cycles are conjugate, which proves the claim.

In S_6 , (1, 2, 3) and (1, 2, 3)(4, 5, 6) have both order 3 but they are not conjugate since they have different type of cycle decomposition.

b) Note that $\tau \sigma \tau^{-1} = (1,2) \in H$, $\tau(1,2)\tau^{-1} = (1,3) \in H$, $\tau(1,3)\tau^{-1} = (1,4) \in H$, $\tau(1,4)\tau^{-1} = (1,5) \in H$. Note now that $(1,i)(1,j)(1,i) = (i,j) \in H$, for any 1 < i < j. Thus H contains all transpositions. Since every element in S_6 is a product of transpositions, in belongs to H, so $S_6 = H$.

Problem 3. a) Define a normal subgroup of a group G (7 points).

b) Let H and K be normal subgroups of a group G. Prove that if $a \in K$ and $b \in H$ then $aba^{-1}b^{-1} \in K \cap H$. Conclude that if $K \cap H = \{e\}$ then every element of Kcommutes with every element of H. (7 points)

c) Suppose that the set $N = \{a \in G : a^3 = e\}$ is a subgroup of a group G. Prove that it is a normal subgroup. (7 points)

Solution: a) A subgroup H of G is called normal (notation: $H \triangleleft G$) if $ghg^{-1} \in H$ for every $g \in G$ and every $h \in H$. The following properties are equivalent:

- 1. $H \lhd G$;
- 2. $c_g(H) \subseteq H$ for every $g \in G$, where c_g is the conjugation by g;
- 3. $c_q(H) = H$ for every $g \in G$;

- 4. the sets of left and right cosets of H in G coincide;
- 5. aH = Ha for every $a \in G$;
- 6. $H = \ker f$ for some homomorphism $f : G \longrightarrow D$.

b) Since $K \triangleleft G$, $a \in K$, and $b \in G$, we have $a^{-1} \in K$, and $ba^{-1}b^{-1} \in K$, and $aba^{-1}b^{-1} \in K$. Similarly, since $H \triangleleft G$, $b \in H$, and $a \in G$, we have $aba^{-1} \in H$ and $aba^{-1}b^{-1} \in H$. Thus $aba^{-1}b^{-1} \in K \cap H$.

If $K \cap H = \{e\}$, then for every $a \in K$ and every element $b \in H$ we have $aba^{-1}b^{-1} = e$, i.e. ab = ba.

c) Let $a \in N$ and $g \in G$. Since conjugation by g is a homomorphisms, we have

$$(gag^{-1})^3 = ga^3g^{-1} = geg^{-1} = e$$

so $gag^{-1} \in N$. This proves that N is normal in G.

Problem 4. a) State Lagrange's Theorem. (8 points)

b) The group S_4 can be considered as the group of all permutations of vertices 1, 2, 3, 4 of a square (numbered counterclockwise). It contains as a subgroup the dihedral group D_8 of order 8 (which consists of those permutations which are isometries; thus T = (1, 2, 3, 4) and S = (2, 4)). What is the index $[S_4 : D_8]$? Prove that D_8 is not normal in S_4 ? (7 points)

c) Let G be a finite group with a normal subgroup N and a subgroup H such that gcd(|H|, [G:N]) = 1. Prove that $H \subseteq N$. Hint: Either use the Third Isomorphism Theorem or study the canonical homomorphism $G \longrightarrow G/N$. (7 points)

Solution: a) Lagrange's Theorem. Let G be a finite group with a subgroup H. Then |G| = |H|[G:H].

b) Since $|S_4| = 24$ and $D_8 = 8$, we have $[S_4 : D_8] = 24/8 = 3$ by Lagrange's Theorem.

Note that $(2,4) \in D_8$ but $(1,4)(2,4)(1,4)^{-1} = (2,1) \notin D_8$. Thus D_8 is not normal in S_4 .

Another argument: Suppose that D_8 is normal. Consider the canonical homomorphism $\pi : S_4 \longrightarrow S_4/D_8 = K$. Note that |K| = 3. If τ is a transposition, then the order of $\pi(\tau)$ divides both the order of τ and the order of K. Since the former is 2 and the latter is 3, we see that the order of $\pi(\tau)$ is 1, i.e. $\tau \in \ker \pi = D_8$. This means that D_8 contains all transpositions and hence is equal to S_4 , a contradiction. Thus D_8 is not normal in S_4 .

c) By the Third Isomorphism Theorem, the groups HN/N and $H/(H \cap N)$ are isomorphic, hence have the same order, call it m. Since HN/N is a subgroup of G/N, its order divides |G/N| = [G : N], i.e. m|[G : N]. On the other hand, $m = |H/(H \cap N)| = [H : H \cap N]$ divides |H|. Thus m divides both |H| and [G : N]. Since gcd(|H|, [G : N]) = 1, me must have m = 1. this means that $H = H \cap N$, i.e. $H \subseteq N$.

Another argument: Consider the canonical homomorphism $\pi : G \longrightarrow G/N = K$. The image $\pi(H)$ is a subgroup of K, so $|\pi(H)|$ divides |K| = [G : N]. On the other hand, π maps H onto $\pi(H)$, so $\pi(H)$ is isomorphic to $H/(\ker \pi \cap H)$ by the First Isomorphism Theorem. By Lagrange's Theorem, $|\pi(H)|$ divides |H|. Thus $|\pi(H)|$ divides both |H| and [G : N]. Since gcd(|H|, [G : N]) = 1, we must have $|\pi(H)| = 1$, i.e. $H \subseteq \ker \pi = N$.

Problem 5. a) State the First Isomorphism Theorem for groups. (8points)

b) Let $G = \langle g \rangle$ be a cyclic group of order n. For each integer m define a map $f_m : G \longrightarrow G$ by $f_m(a) = a^m$.

- 1. Prove that f_m is a homomorphism. (5 points)
- 2. Prove that f_m is an automorphism iff gcd(m, n) = 1 (5 points)
- 3. Find the kernel and the image of f_8 when n = 12. (5 points)

Solution: a) First Isomorphism Theorem. Let $f : G \longrightarrow H$ be a homomorphism with kernel $K = \ker f$. The map $g : G/K \longrightarrow f(K)$ defined by g(aK) = f(a) is an isomorphism. In particular, if f is surjective, then G/K and H are naturally isomorphic.

b) Since G is abelian, we have $f_m(ab) = (ab)^m = a^m b^m = f_m(a) f_m(b)$. This shows that f_m is a homomorphism.

Suppose that $a \in G$ belongs to the kernel of f. If k is the order of a then k||G| = n. But also $e = f_m(a) = a^m$, so k|m. Thus, if gcd(m, n) = 1, then the kernel of f_m is trivial, i.e. f_m is injective. An injective function from a finite set to itself is also surjective, so f_m is an automorphism. Conversely, if d > 1 is a divisor of both n and m then $g^{n/d} \neq e$ but $f_m(g^{n/d}) = g^{nm/d} = (g^n)^{m/d} = e$, so f_m is not injective. This proves 2.

Note that for n = 12 we have $f_8(g^i) = e$ iff $g^{8i} = e$, iff 12|8i, iff 3|i. Thus ker $f_8 = \{e, g^3, g^6, g^9\} = \langle g^3 \rangle$. The image of f_8 is $\langle g^8 \rangle = \{g^8, g^4, e\}$.

Remark. In general, let $d = \gcd(m, n)$. Note that $e = f_m(g^i) = g^{mi}$ iff n|mi, iff n/d divides i (since n/d and m/d are relatively prime). Thus the kernel of f_m is $\langle g^{n/d} \rangle$, so it has d elements. Note that d = sm + tn for some integers s, t so $f_m(g^s) = g^{sm} = g^{em}g^{tn} = g^{sm+tn} = g^d$ (since $g^{tn} = e$). Thus $\langle g^d \rangle$ is contained in the image of f_m . Note that g^d has order n/d, so $|\langle g^d \rangle| = n/d$. By Lagrange's Theorem and the First Isomorphism Theorem, the image of f_m has $|G|/|\ker f_m| = n/d$ elements. It follows that $f_m(G) = \langle g^d \rangle$.

The following problems are optional. You may earn extra points, but work on these problems only after you are done with the other problems

Problem 6. a) Prove that if $n \ge 3$ then S_n has no normal subgroups of order 2.

b) Let $n \ge 5$. Prove that if N is a normal subgroup of S_n then $N = \{e\}$, $N = A_n$ or $N = S_n$. Hint: Note that $N \cap A_n$ is normal in A_n .

Solution: a) Suppose that $M = \{e, \tau\}$ is a subgroup of order 2. Since τ is not trivial, $\tau(a) = b \neq a$ for some $a \in \{1, 2, ..., n\}$. Since $n \geq 3$, there is $c \in \{1, 2, ..., n\}$ such that $c \neq a$ and $c \neq b$. Then $[(b, c)\tau(b, c)^{-1}](a) = c \neq \tau(a)$, so $(b, c)\tau(b, c)^{-1} \neq \tau$ and $(b, c)\tau(b, c)^{-1} \neq e$. Thus $(b, c)\tau(b, c)^{-1} \notin M$, which shows that M is not normal in S_n .

b) Suppose that $n \ge 5$. Then A_n is a simple group. Suppose that N is a nontrivial proper normal subgroup of S_n . Then $N \cap A_n$ is normal in A_n . Thus either $N \cap A_n = \{e\}$ or $N \cap A_n = A_n$. In the former case, the canonical homomorphism $S_n \longrightarrow S_n/A_n$ is injective on N and since S_n/A_n has order 2, also N has order 2. This is not possible by a). In the latter case, $A_n \subseteq N$, so N/A_n is a proper subgroup of S_n/A_n . Since S_n/A_n has only two elements, N/A_n is trivial, i.e. $N = A_n$. This proves that A_n is the only non-trivial proper normal subgroup of S_n for $n \ge 5$.

Problem 7. In Problem 4b) above list all elements of $D_8 \cap A_4$. Prove that the nontrivial elements of $D_8 \cap A_4$ are exactly the permutations of S_4 which are products of two disjoint transpositions. Conclude that $D_8 \cap A_4$ is normal in S_4 . Consider the subset F of S_4 which consists of all permutations which take 1 to 1. Prove that Fis a subgroup of S_4 and it is isomorphic to S_3 . Prove that $F \cap (D_8 \cap A_4) = \{e\}$. Conclude that $S_4/(D_8 \cap A_4)$ is isomorphic to S_3 .

Solution: Note that

$$D_8 = \{e, (1, 2, 3, 4) = T, (1, 3)(2, 4) = T^2, (1, 4, 3, 2) = T^3, (2, 4) = S, (1, 4)(2, 3) = ST, (1, 3) = ST^2, (1, 2)(3, 4) = ST^3\}.$$

Thus,

$$D_8 \cap A_4 = \{e, (1,3)(2,4), (1,4)(2,3), 1, 2)(3,4)\}$$

It is clear now that the non-trivial elements of $D_8 \cap A_4$ are exactly the permutations of S_4 which are products of two disjoint transpositions. Note that a conjugate of a product of two disjoint transpositions is again a product of two disjoint transpositions. This shows that $D_8 \cap A_4$ is normal in S_4 . Suppose that $\sigma, \tau \in F$. Then $\sigma(1) = 1 = \tau(1)$. Thus $(\sigma\tau)(1) = \sigma(\tau(1)) = \sigma(1) = 1$, so $\sigma\tau \in F$. Also, $\sigma^{-1}(1) = 1$, so $\sigma^{-1} \in F$. We see that F is a subgroup of A_4 . Elements of F can be identified with permutations of $\{2, 3, 4\}$, which in turn form a group isomorphic to S_3 . Clearly no non-trivial element of $D_8 \cap A_4$ belongs to F. It follows that the canonical homomorphism $\phi: S_4 \longrightarrow S_4/(D_8 \cap A_4)$ is injective on F. Since F and $S_4/(D_8 \cap A_4)$ have both 6 elements, ϕ gives an isomorphism of F and $S_4/(D_8 \cap A_4)$. This proves that $S_4/(D_8 \cap A_4)$ is isomorphic to S_3 .