
Solutions to Exam 3

Problem 1. In the group S9 let a =

(

1 2 3 4 5 6 7 8 9

4 9 8 1 7 3 2 6 5

)

.

a) Write a as a product of disjoint cycles. (3 points)

b) Find the order of a. (2 points)

c) Compute a(2, 5, 3, 7, 4)a−1. (3 points)

d) Write a as a product of transpositions. (3 points)

e) Is a even or odd? (2 points)

f) Is there an element of order 16 in S9? Explain your answer. (3 points)

g) Let b = a2. Write b as a product of disjoint cycles. List all elements of < b >. Is

< b > a normal subgroup? (4 points)

Solution: a) a = (1, 4)(2, 9, 5, 7)(3, 8, 6).

b) The order of a is equal to lcm(2, 4, 3) = 12.

c) a(2, 5, 3, 7, 4)a−1 = (a(2), a(5), a(3), a(7), a(4)) = (9, 7, 8, 2, 1).

d) Since (2, 9, 5, 7) = (2, 7)(2, 5)(2, 9) and (3, 8, 6) = (3, 6)(3, 8), we have

a = (1, 4)(2, 7)(2, 5)(2, 9)(3, 6)(3, 8).

e) Since a is a product of 6 transpositions, it is even.

f) Recall that the order of a permutation τ is the least common multiple of the

lengths of the cycles in the cycle decomposition of τ . Note that if a least common

multiple of some integers is 16 then one of the integers must be equal to 16 (this is

true for any prime power in place of 16). Thus a permutation of order 16 must have

at least one cycle of length 16 but S9 does not have cycles of length larger than 9.

Thus there is non element of order 16 in S9.

g) We have b = a2 = (1, 4)2(2, 9, 5, 7)2(3, 8, 6)2 = (2, 5)(9, 7)(3, 6, 8). Now b2 =

(3, 8, 6), b3 = (2, 5)(9, 7), b4 = (3, 6, 8), b5 = (2, 5)(9, 7)(3, 8, 6) and b6 = e is the
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identity. Thus < b >= {e, b, b2, b3, b4, b5}. It is not a normal subgroup, since

(3, 8, 6) = b2 ∈< b > but (3, 1)(3, 8, 6)(3, 1)−1 = (1, 8, 6) 6∈< b >.

Problem 2. a) Prove that any 2 elements of order 3 in S5 are conjugate. Is the

same true for S6? Hint: What can you say about elements of order 3 in S5? (7

points)

b) Suppose that a subgroup H of S6 contains σ = (1, 6) and τ = (2, 3, 4, 5, 6). Prove

that H = S6. Hint: What is (1, i)(1, j)(1, i)? (7 points)

Solution: a) In general, a permutation of prime order p is a product of disjoint

p−cycles. Thus an element of order 3 in S5 is a product of disjoint 3−cycles. Since

6 > 5, only one three cycle can be present, so an element of order 3 in S5 is a

3−cycle. We know that any two 3−cycles are conjugate, which proves the claim.

In S6, (1, 2, 3) and (1, 2, 3)(4, 5, 6) have both order 3 but they are not conjugate

since they have different type of cycle decomposition.

b) Note that τστ−1 = (1, 2) ∈ H, τ(1, 2)τ−1 = (1, 3) ∈ H, τ(1, 3)τ−1 = (1, 4) ∈ H,

τ(1, 4)τ−1 = (1, 5) ∈ H. Note now that (1, i)(1, j)(1, i) = (i, j) ∈ H, for any

1 < i < j. Thus H contains all transpositions. Since every element in S6 is a

product of transpositions, in belongs to H, so S6 = H.

Problem 3. a) Define a normal subgroup of a group G (7 points).

b) Let H and K be normal subgroups of a group G. Prove that if a ∈ K and b ∈ H

then aba−1b−1 ∈ K ∩ H. Conclude that if K ∩ H = {e} then every element of K

commutes with every element of H. (7 points)

c) Suppose that the set N = {a ∈ G : a3 = e} is a subgroup of a group G. Prove

that it is a normal subgroup. (7 points)

Solution: a) A subgroup H of G is called normal (notation: H�G) if ghg−1 ∈ H

for every g ∈ G and every h ∈ H. The following properties are equivalent:

1. H � G;

2. cg(H) ⊆ H for every g ∈ G, where cg is the conjugation by g;

3. cg(H) = H for every g ∈ G;
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4. the sets of left and right cosets of H in G coincide;

5. aH = Ha for every a ∈ G;

6. H = ker f for some homomorphism f : G −→ D.

b) Since K � G, a ∈ K, and b ∈ G, we have a−1 ∈ K, and ba−1b−1 ∈ K, and

aba−1b−1 ∈ K. Similarly, since H � G, b ∈ H, and a ∈ G, we have aba−1 ∈ H and

aba−1b−1 ∈ H. Thus aba−1b−1 ∈ K ∩ H.

If K ∩ H = {e}, then for every a ∈ K and every element b ∈ H we have

aba−1b−1 = e, i.e. ab = ba.

c) Let a ∈ N and g ∈ G. Since conjugation by g is a homomorphisms, we have

(gag−1)3 = ga3g−1 = geg−1 = e

so gag−1 ∈ N . This proves that N is normal in G.

Problem 4. a) State Lagrange’s Theorem. (8 points)

b) The group S4 can be considered as the group of all permutations of vertices

1, 2, 3, 4 of a square (numbered counterclockwise). It contains as a subgroup the

dihedral group D8 of order 8 (which consists of those permutations which are isome-

tries; thus T = (1, 2, 3, 4) and S = (2, 4)). What is the index [S4 : D8]? Prove that

D8 is not normal in S4? (7 points)

c) Let G be a finite group with a normal subgroup N and a subgroup H such that

gcd(|H|, [G : N ]) = 1. Prove that H ⊆ N . Hint: Either use the Third Isomorphism

Theorem or study the canonical homomorphism G −→ G/N . (7 points)

Solution: a) Lagrange’s Theorem. Let G be a finite group with a subgroup

H. Then |G| = |H|[G : H].

b) Since |S4| = 24 and D8 = 8, we have [S4 : D8] = 24/8 = 3 by Lagrange’s

Theorem.

Note that (2, 4) ∈ D8 but (1, 4)(2, 4)(1, 4)−1 = (2, 1) 6∈ D8. Thus D8 is not

normal in S4.

Another argument: Suppose that D8 is normal. Consider the canonical homo-

morphism π : S4 −→ S4/D8 = K. Note that |K| = 3. If τ is a transposition, then
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the order of π(τ) divides both the order of τ and the order of K. Since the former

is 2 and the latter is 3, we see that the order of π(τ) is 1, i.e. τ ∈ kerπ = D8. This

means that D8 contains all transpositions and hence is equal to S4, a contradiction.

Thus D8 is not normal in S4.

c) By the Third Isomorphism Theorem, the groups HN/N and H/(H ∩ N) are

isomorphic, hence have the same order, call it m. Since HN/N is a subgroup of

G/N , its order divides |G/N | = [G : N ], i.e. m|[G : N ]. On the other hand,

m = |H/(H ∩N)| = [H : H ∩N ] divides |H|. Thus m divides both |H| and [G : N ].

Since gcd(|H|, [G : N ]) = 1, me must have m = 1. this means that H = H ∩N , i.e.

H ⊆ N .

Another argument: Consider the canonical homomorphism π : G −→ G/N =

K. The image π(H) is a subgroup of K, so |π(H)| divides |K| = [G : N ]. On the

other hand, π maps H onto π(H), so π(H) is isomorphic to H/(kerπ ∩ H) by the

First Isomorphism Theorem. By Lagrange’s Theorem, |π(H)| divides |H|. Thus

|π(H)| divides both |H| and [G : N ]. Since gcd(|H|, [G : N ]) = 1, we must have

|π(H)| = 1, i.e. H ⊆ ker π = N .

Problem 5. a) State the First Isomorphism Theorem for groups. (8points)

b) Let G =< g > be a cyclic group of order n. For each integer m define a map

fm : G −→ G by fm(a) = am.

1. Prove that fm is a homomorphism. (5 points)

2. Prove that fm is an automorphism iff gcd(m,n) = 1 (5 points)

3. Find the kernel and the image of f8 when n = 12. (5 points)

Solution: a) First Isomorphism Theorem. Let f : G −→ H be a homomor-

phism with kernel K = ker f . The map g : G/K −→ f(K) defined by g(aK) = f(a)

is an isomorphism. In particular, if f is surjective, then G/K and H are naturally

isomorphic.

b) Since G is abelian, we have fm(ab) = (ab)m = ambm = fm(a)fm(b). This shows

that fm is a homomorphism.
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Suppose that a ∈ G belongs to the kernel of f . If k is the order of a then

k||G| = n. But also e = fm(a) = am, so k|m. Thus, if gcd(m,n) = 1, then the

kernel of fm is trivial, i.e. fm is injective. An injective function from a finite set to

itself is also surjective, so fm is an automorphism. Conversely, if d > 1 is a divisor

of both n and m then gn/d 6= e but fm(gn/d) = gnm/d = (gn)m/d = e, so fm is not

injective. This proves 2.

Note that for n = 12 we have f8(g
i) = e iff g8i = e, iff 12|8i, iff 3|i. Thus

ker f8 = {e, g3, g6, g9} =< g3 >. The image of f8 is < g8 >= {g8, g4, e}.

Remark. In general, let d = gcd(m,n). Note that e = fm(gi) = gmi iff n|mi,

iff n/d divides i (since n/d and m/d are relatively prime). Thus the kernel of

fm is < gn/d >, so it has d elements. Note that d = sm + tn for some integers

s, t so fm(gs) = gsm = gemgtn = gsm+tn = gd (since gtn = e). Thus < gd > is

contained in the image of fm. Note that gd has order n/d, so | < gd > | = n/d.

By Lagrange’s Theorem and the First Isomorphism Theorem, the image of fm has

|G|/| ker fm| = n/d elements. It follows that fm(G) =< gd >.

**************************************************************************

**************************************************************************

The following problems are optional. You may earn extra points, but work on these

problems only after you are done with the other problems

Problem 6. a) Prove that if n ≥ 3 then Sn has no normal subgroups of order 2.

b) Let n ≥ 5. Prove that if N is a normal subgroup of Sn then N = {e}, N = An

or N = Sn. Hint: Note that N ∩ An is normal in An.

Solution: a) Suppose that M = {e, τ} is a subgroup of order 2. Since τ is not

trivial, τ(a) = b 6= a for some a ∈ {1, 2, ..., n}. Since n ≥ 3, there is c ∈ {1, 2, ..., n}

such that c 6= a and c 6= b. Then [(b, c)τ(b, c)−1](a) = c 6= τ(a), so (b, c)τ(b, c)−1 6= τ

and (b, c)τ(b, c)−1 6= e. Thus (b, c)τ(b, c)−1 6∈ M , which shows that M is not normal

in Sn.

b) Suppose that n ≥ 5. Then An is a simple group. Suppose that N is a non-

trivial proper normal subgroup of Sn. Then N ∩ An is normal in An. Thus either

N ∩ An = {e} or N ∩ An = An. In the former case, the canonical homomorphism
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Sn −→ Sn/An is injective on N and since Sn/An has order 2, also N has order 2.

This is not possible by a). In the latter case, An ⊆ N , so N/An is a proper subgroup

of Sn/An. Since Sn/An has only two elements, N/An is trivial, i.e. N = An. This

proves that An is the only non-trivial proper normal subgroup of Sn for n ≥ 5.

Problem 7. In Problem 4b) above list all elements of D8∩A4. Prove that the non-

trivial elements of D8 ∩ A4 are exactly the permutations of S4 which are products

of two disjoint transpositions. Conclude that D8 ∩A4 is normal in S4. Consider the

subset F of S4 which consists of all permutations which take 1 to 1. Prove that F

is a subgroup of S4 and it is isomorphic to S3. Prove that F ∩ (D8 ∩ A4) = {e}.

Conclude that S4/(D8 ∩ A4) is isomorphic to S3.

Solution: Note that

D8 = {e, (1, 2, 3, 4) = T, (1, 3)(2, 4) = T 2, (1, 4, 3, 2) = T 3,

(2, 4) = S, (1, 4)(2, 3) = ST, (1, 3) = ST 2, (1, 2)(3, 4) = ST 3}.

Thus,

D8 ∩ A4 = {e, (1, 3)(2, 4), (1, 4)(2, 3), 1, 2)(3, 4)}.

It is clear now that the non-trivial elements of D8∩A4 are exactly the permutations

of S4 which are products of two disjoint transpositions. Note that a conjugate of

a product of two disjoint transpositions is again a product of two disjoint transpo-

sitions. This shows that D8 ∩ A4 is normal in S4. Suppose that σ, τ ∈ F . Then

σ(1) = 1 = τ(1). Thus (στ)(1) = σ(τ(1)) = σ(1) = 1, so στ ∈ F . Also, σ−1(1) = 1,

so σ−1 ∈ F . We see that F is a subgroup of A4. Elements of F can be identified

with permutations of {2, 3, 4}, which in turn form a group isomorphic to S3. Clearly

no non-trivial element of D8 ∩ A4 belongs to F . It follows that the canonical ho-

momorphism φ : S4 −→ S4/(D8 ∩ A4) is injective on F . Since F and S4/(D8 ∩ A4)

have both 6 elements, φ gives an isomorphism of F and S4/(D8 ∩ A4). This proves

that S4/(D8 ∩ A4) is isomorphic to S3.

6


