Final Exam, Math 401
Monday, December 10

Problem 1. State a definition of:

1

. Euler function (3 points);

. aring, a domain, a field (6 points);

an ideal, maximal ideal, prime ideal, principal ideal (8 points);
. a UFD, PID, Euclidean domain (6 points);

irreducible elements and prime elements (4 points);

. a group, subgroup, normal subgroup, p—group (8 points);

. an action of a group G on a set X (5 points);

left cosets of a subgroup H of a group G and the factor group G/H (explain what
are the elements of G/H and how the group structure is defined) (5 points).

Problem 2. State (5 points each)

1

2.

7.

8.

. Fermat’s Little Theorem and Fuler’s Theorem:;
Chinese Remainder Theorem,;

Einsenstein Criterion;

. Gauss Lemma;

division algorithm for polynomials;

. First Isomorphism Theorem for groups and rings;
Lagrange’s Theorem;

Sylow Theorem;

Problem 3. a) Using Euclid’s algorithm compute ged(2275,462) and find =,y € Z such

tha

t ged(2275,462) = x - 2275 4 y - 462 (check your answer) (8 points).

b) Compute ¢(360). Explain the results you are using. (8 points)

c) Prove that if ged(n,21) = 1 then n® = 1 (mod 63) . (10 points)



Problem 4. a) Find a greatest common divisor of the polynomials 2° + 2 and 2z* + x in

F5[x]. Verify your answer.(5 points)

b) Factor each polynomial into irreducible factors. Justify you answer.
1. 227 — 1423 + 492 — 35 in Q[z] (5 points)
2. 23+ 2% + z + 3 in F5[z] (5 points).
3. 2zt + 23 + 2 + 1 in Fy[z] (5 points)

Problem 5. Let [ and J be ideals of a ring R. Define (I : J) as the set of all elements
r € R such that rj € I for all j € J, i.e.

(I:J)={reR:rjelforevery jec J}

a) Prove that (I : J) is an ideal of R. (8 points)
b) Prove that if I is a prime ideal then either J C [ or (I : J) C I (8 points).

c¢) Suppose that R is a UFD and a,b € R — 0. Show that r € (aR : bR) iff a|rb. Use it to

prove that (aR : bR) = mf{. (8 points)
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Problem 6. In the group Sy let a =
4 98173265

) and b = (1,6,9)(2,7,8,3).

a) Are a and b conjugate? Explain your answer. (5 points)
b) Find ¢ € Sy such that cac™ = a™'. (5 points)
c) Find < a >N < b>. (5 points)

d) Write b as a product of transpositions. (5 points)
Problem 7. a) Let G be a cyclic group and f : G — G a function. Prove that f is a

homomorphism iff there is an integer k such that f(a) = a* for every a € G. (8 points)

b) Let G be a finite group with a normal subgroup N. Prove that if K is a subgroup of
G such that K NN = {e} then |K||[G : N]. (8 points)

c¢) Let G be a finite group of order 231. Prove that G has a normal subgroup of order 7.
(9 points)
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The following problems are optional. You may earn extra points, but work on these prob-

lems only after you are done with the other problems

Problem 8. Let P be a p—group.
a) Prove that any subgroup @ of index p in P is normal.

b) Prove that a proper subgroup B of P is contained in a subgroup A such that [A : B] = p.
Hint: Use induction on |P|. Pick an element a € Z(P) of order p and consider two cases:
a€ Banda¢B.

Problem 9. Prove that the ring Z[v/2] = {a + bv/2 : a,b € Z} is an Euclidean domain
with Euclidean function f(a + bv/2) = |a® — 20|



