
Solution to problem 2.3. Since the set of all 2 × 2 matrices is a ring, a subset S

with the same multiplication and addition is a ring iff a − b and a · b are in S for

any a, b ∈ S.

a) The product of two symmetric matrices need not be symmetric:
(

1 1

1 1

)(

1 2

2 3

)

=

(

3 5

3 5

)

.

Thus symmetric matrices do not form a ring.

b) The product of two skew-symmetric matrices need not be skew-symmetric:
(

0 1

−1 0

)(

0 1

−1 0

)

=

(

−1 0

0 −1

)

.

Thus skew-symmetric matrices do not form a ring.

c) The difference and the product of any two upper-traingular matrices is upper-

triangular:
(

a b

0 c

)

−

(

x y

0 z

)

=

(

a − x b − y

0 c − z

)

and

(

a b

0 c

)

·

(

x y

0 z

)

=

(

ax ay + bz

0 cz

)

.

Thus upper-traingular matrices form a ring. This ring is not commutative:
(

0 0

0 1

)

·

(

0 1

0 0

)

=

(

0 0

0 0

)

and

(

0 1

0 0

)

·

(

0 0

0 1

)

=

(

0 1

0 0

)

.

Since the identity matrix is upper-triangular, this ring is unital. It is not a division

ring since the matrices above are not invertible (they are zero-divisors).

d) Clearly the difference of any two strictly upper-triangular matrices is strictly

upper-triangular and the product of any two strictly upper-triangular matrices is

the zero matrix (which is strictly upper-triangular), so the strictly upper-triangular

matrices form a ring. The multiplication in this ring is trivial (the product of any

two elements is zero) so this ring is commutative but does not have a unit and is

not a division ring.

e) Since
(

a b

−b a

)

−

(

x y

−y x

)

=

(

a − x b − y

−(b − y) a − x

)

and

(

a b

−b a

)

·

(

x y

−y x

)

=

(

ax − by ay + bx

−bx − ay −by + ax

)

,
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this set is a ring. Furthermore,

(

a b

−b a

)

·

(

x y

−y x

)

=

(

ax − by ay + bx

−bx − ay −by + ax

)

=

(

x y

−y x

)

·

(

a b

−b a

)

so this ring is commutative. It contains the identity matrix, so it is unital. Further-

more, if one of a, b is not zero then

(

a b

−b a

)

·

(

a

a2+b2
−b

a2+b2

b

a2+b2
a

a2+b2

)

=

(

1 0

0 1

)

so every non-zero elemet has an inverse. Thus this ring is a field.

Solution to problem 2.9. We need to verify all the axioms.

A1.

(r1, s1)+(r2, s2)]+(r3, s3) = (r1 +r2, s1 +s2)+(r3, s3) = ((r1 +r2)+r3, (s1 +s2)+s3)

= (r1+(r2+r3), s1+(s2+s3)) = (r1, s1)+(r2+r3, s2+s3) = (r1, s1)+[(r2, s2)+(r3, s3)].

A2. We have (r, s) + (0, 0) = (r + 0, s + 0) = (r, s) = (0, 0) + (r, s) so (0, 0) is the

zero of R × S.

A3. Since (r, s) + (−r,−s) = (r + (−r), s + (−s)) = (0, 0), every element has its

negative.

A4. (r, s) + (r1, s1) = (r + r1, s + s1) = (r1 + r, s1 + s) = (r1, s1) + (r, s).

M1. [(r1, s1) · (r2, s2)] · (r3, s3) = (r1 · r2, s1 · s2) · (r3, s3) = ((r1 · r2) · r3, (s1 · s2) · s3) =

(r1 · (r2 · r3), s1 · (s2 · s3)) = (r1, s1) · (r2 · r3, s2 · s3) = (r1, s1) · [(r2, s2) · (r3, s3)].

D.

[(r1, s1) + (r2, s2)] · (r3, s3) = (r1 + r2, s1 + s2) · (r3, s3) = ((r1 + r2) · r3, (s1 + s2) · s3)

= (r1·r3+r2·r3, s1·s3+s2·s3) = (r1·r3, s1·s3)+(r2·r3, s2·s3) = (r1, s1)·(r3, s3)+(r2, s2)·(r3, s3)

and similarly

(r3, s3) · [(r1, s1) + (r2, s2)] = (r3, s3) · (r1, s1) + (r3, s3) · (r2, s2)
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.

Now R × S is commutative iff (r, s)(r1, s1) = (r1, s1)(r, s) for any r, r1 ∈ R and

s, s1 ∈ S. This means that rr1 = r1r and ss1 = s1s for any r, r1 ∈ R and s, s1 ∈ S

so indeed R × S is commutative iff both R and S are commutative. If 1R, 1S are

the identities of R and S respectively, that

(r, s)(1R, 1S) = (r · 1R, s · 1S) = (r, s) = (1R, 1S)(r, s)

so (1R, 1S) is the identity of R× S. Conversly, if (x, y) is the identity of R× S then

(r, s)(x, y) = (r, s) = (x, y)(r, s)

for any r ∈ R and s ∈ S. In other words,

rx = r = xr and sy = s = ys

for any r ∈ R and s ∈ S, so x is the identity of R and y is the identity of S.

Since (r, 0)(0, s) = (0, 0), R × S has zero divisors so it cannot be a filed.
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