
Solution to Problem 2.6: We use induction on n. For n = 1 the result is trivial.

Suppose that for some n we have
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Then

(x + y)n+1 = (x + y)(x + y)n = x(x + y)n + y(x + y)n,

and
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Since x and y commute, also y and x + y commute and therefore

y(x + y)n = (x + y)ny =

(

n
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)
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Thus,
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0
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(
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Note that
(

n

0
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=
(
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)

,
(

n

n

)

=
(
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)

and
(

n

i

)

+
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)

=
(
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)

for i = 1, 2, ..., n− 1. It

follows that

(x + y)n+1 =

(

n + 1

0

)
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(
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xny + ... +

(
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n
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)
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This proves that the result holds for n + 1. By induction, it holds for all natural

numbers n > 0.
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