Homework

due on Wednesday, October 3

Problem 1. Let $f : R \longrightarrow S$ be a surjective homomorphism of rings. Suppose that R is unital. Prove that S is also unital and f(1) is the identity element of S.

Problem 2. a) Prove that $a \in \mathbb{Z}/n$ is invertible iff gcd(a, n) = 1. What is the number of invertible elements of \mathbb{Z}/n ?

b) Prove that $a \in \mathbb{Z}/n$ is a zero divisor iff gcd(a, n) > 1.

c) For positive integers m, n define a function $f : \mathbb{Z}/n \longrightarrow \mathbb{Z}/m$ by $f(a) \equiv a \pmod{m}$ (i.e. f(a) is the remainder upon division of a by m). Prove that f is a homomorphism iff m|n.

Read sections 2.1, 2.2 of Cameron's book and section 3.1 of Lauritzen's book.