
Problem 1. Let f : R −→ S be a surjective homomorphism of rings. Suppose that

R is unital. Prove that S is also unital and f(1) is the identity element of S.

Solution: We need to show that f(1)s = s = sf(1) for all s ∈ S. Since f is

surjective, for any s ∈ S there is r ∈ R such that s = f(r). Thus f(1)s = f(1)f(r) =

f(1 · r) = f(r) = s and sf(1) = f(r)f(1) = f(r · 1) = f(r) = s. Thus f(1) is indeed

the identity element of S.

Problem 2. a) Prove that a ∈ Z/n is invertible iff gcd(a, n) = 1. What is the

number of invertible elements of Z/n?

b) Prove that a ∈ Z/n is a zero divisor iff gcd(a, n) > 1 (and a 6= 0).

c) For positive integers m, n define a function f : Z/n −→ Z/m by f(a) ≡

a (mod m) (i.e. f(a) is the remainder upon division of a by m). Prove that f

is a homomorphism iff m|n.

Solution: a) If a ∈ Z/n is invertible then ab = 1 for some b ∈ Z/n. On the

level of integers this means that n|(ab − 1). Any common divisor d of n and a is

a divisor of ab and of ab − 1 (since n|(ab − 1)), so it must be 1. This proves that

gcd(a, n) = 1.

Conversely, suppose that gcd(a, n) = 1. Then aφ(n) = 1 by Euler’s theorem. In

other words, aaφ(n)−1 = 1, so a is invertible.

Another argument: Consider the powers a, a2, .... Since Z/n is finite, there

are k < l such that ak = al. On the level of integers this means that n|al − ak =

ak(al−k − 1). Since gcd(a, n) = 1, we have gcd(ak, n) = 1 and therefore n|(al−k − 1).

This means that al−k = 1 in Z/n, so a is invertible.

By the very definition of φ(n), it equals to the number of elements in Z/n which

are relatively prime to n hence also to the number of invertible elements in Z/n.

b) Suppose that a ∈ Z/n is a zero divisor. Thus a 6= 0 and there is b 6= 0 such

that ab = 0. On the level of integrs this means that n|ab. If we had gcd(a, n) = 1

then n|ab would imply that n|b, i.e. b = 0, a contradiction. Thus we must have

gcd(a, n) > 1 (this also follows easily from a)). Conversely, suppose that d =

gcd(a, n) > 1. Then b = n/d 6= 0 in Z/n. Clearly n = db|ab, so ab = 0 in Z/n. It

follows that a is a zero-divisor.
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Remark. Note that the argument in b) is quite simple. Now using b) we can

give a proof of a) which does not use Euler’s theorem. In fact, if gcd(a, n) = 1 then

a is not a zero divisor by b). Thus the left multiplication la by a is injective and

therefore bijective (since Z/n is finite). Thus there is b ∈ Z/n such that la(b) = 1,

i.e. ab = 1. Since Z/n is commutative, we see that a is invertible. If gcd(a, n) > 1

then a is a zero divisor so it cannot be invertible.

c) Suppose first that m|n. Let a, b ∈ Z/n and let a + b = c, ab = d (in Z/n).

Let r = f(a), s = f(b), t = f(c), u = f(d). We need to prove that r + s = t and

rs = u in Z/m. On the level of integers this means that r + s ≡ t (mod m) and

rs ≡ u (mod m) . Note that a ≡ r (mod m) , b ≡ s (mod m) , c ≡ t (mod m) and

d ≡ u (mod m) be the definition of f . So we have to prove that

a + b ≡ c (mod m) and ab ≡ d (mod m) . (1)

Note that by the definition of addition and multiplication in Z/n we have

a + b ≡ c (mod n) and ab ≡ d (mod n) . (2)

Since m|n, the congrunces (2) clearly imply congruences (1), so our proof is complete.

Suppose now that f is a homomorphism. Note that f(1) = 1. The key observation

is the following:

In the ring Z/m the sum 1 + 1 + ... + 1 (1 is added k times) equals 0 iff m|k

(this is immediate consequence of the definition of addition in Z/m ).

Thus 1 + 1 + .. + 1 = 0 in Z/n ( 1 is added n times). Since f is a homomorphism,

we have 0 = f(0) = f(1) + f(1) + ... + f(1) = 1 + 1 + ... + 1 in Z/m ( 1 is added n

times). By our key observation this implies that m|n.
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