Homework

due on Friday, October 5

Read section 3.1 of Lauritzen's book and section 2.2.2 of Cameron's book. Solve problems 8, 9 at the end of Chapter 3 of Lauritzen's book (pages 138-139) and the following problem.

Problem 1. Let R be a ring.

a) Let $f: \mathbb{Z} \longrightarrow R$ be a homomorphism and let r = f(1). Prove that $r^2 = r$.

b) Let $r \in R$ be such that $r^2 = r$ (such elements are called **idempotents**). Prove that there is unique homomorphism $f : \mathbb{Z} \longrightarrow R$ such that f(1) = r.

c) Suppose that R is a domain and $r \in R$ is an idempotent. Prove that either r = 0 or R is unital and r = 1. Conclude that if R is a unital domain, there exist unique homomorphisms $f : \mathbb{Z} \longrightarrow R$ which is not identically 0.