
Problem 1. Let R be a finite ring. Suppose that a ∈ R is not a zero divisor (neither

left nor right). Prove that R is unital and a is invertible. Hint. Prove that ak = a

for some integer k > 1. Then prove that ak−1 is the identity element of R.

Solution: Consider the sequence a, a2, a3, .... Since R is finite, there exist m < n

such that am = an. Thus am−1(an−m+1 − a) = 0. Since a is not a zero divisor, am−1

is not a zero divisor and therefore we must have an−m+1 − a = 0, i.e. ak = a, where

k = n − m + 1 > 1.

Let now r ∈ R. Then a(ak−1r − r) = akr − ar = ar − ar = 0 and (rak−1 − r)a =

rak − ra = ra− ra = 0. Since a is not a zero divisor, we must have ak−1r− r = 0 =

rak−1 − r. In other words, ak−1r = r = rak−1 for all r ∈ R. This means that ak−1 is

the identity element of R. In particular, R is unital. Also, if k = 2 then a itself is

the identity element, hence it is invertible. If k > 2 then 1 = ak−1 = aak−2 = ak−2a,

so a is invertible.

Remark. Note that the problem implies in particular that any finite domain is a

division ring. So we have another proof of a result from class.

Problem 2. Let I be an ideal in the ring M2(R). Prove that either I = {0} or

I = M2(R).

Solution: Suppose that I 6= {0}. Then there is a non-zero matrix
(

a b
c d

)

in I.

Note that
(

a b

c d

)(

0 1

1 0

)

=

(

b a

d c

)

,

(

0 1

1 0

)(

a b

c d

)

=

(

c d

a b

)

,

and
(

0 1

1 0

)(

a b

c d

)(

0 1

1 0

)

=

(

d c

b a

)

.

Since I is an ideal, the matrices
(

a b
c d

)

,
(

b a
d c

)

,
(

c d
a b

)

,
(

d c
b a

)

belong to I. Since at least

one of a, b, c, d is not zero, we see that I contains a matrix
(

x y
z w

)

with x 6= 0. Thus
(

1

x
0

0 0

)(

x y

z w

)(

1 0

0 0

)

=

(

1 0

0 0

)

∈ I.

It follows that
(

1 0

0 0

)(

0 1

1 0

)

=

(

0 1

0 0

)

∈ I,

(

0 1

1 0

)(

1 0

0 0

)

=

(

0 0

1 0

)

∈ I,
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and
(

0 1

1 0

)(

1 0

0 0

)(

0 1

1 0

)

=

(

0 0

0 1

)

∈ I.

Now, for any a, b, c, d ∈ R we have

(

a b

c d

)

=

(

a 0

0 a

)(

1 0

0 0

)

+

(

b 0

0 b

)(

0 1

0 0

)

+

(

c 0

0 c

)(

0 0

1 0

)

+

(

d 0

0 d

)(

0 0

0 1

)

∈ I.

Thus every matrix belongs to I, i.e. I = M2(R).

Solution to Problem 2.18 Our map θ : R[x] −→ C is defined by θ(f) = f(i). It

is a homomorphism:

θ(f + g) = (f + g)(i) = f(i) + g(i) = θ(f) + θ(g),

θ(f · g) = (f · g)(i) = f(i) · g(i) = θ(f) · θ(g).

Given a complex number a+bi we have θ(a+bx) = a+bi so θ is surjective. Suppose

now that f ∈ ker θ, i.e. θ(f) = 0. Thus f(i) = 0. Applying complex conjugation to

this equality and using the fact that the coefficients of f are real, we get that f(−i) =

0. Thus i and −i are roots of f and therefore f(x) = (x−i)(x+i)g(x) = (x2+1)g(x)

for some polynomial in C[x]. Applying complex conjugation we easily see that g has

in fact real coefficients. Thus f ∈ (x2 + 1)R[x]. Conversely, if f ∈ (x2 + 1)R[x] then

f(x) = (x2 + 1)g(x) for some g ∈ R[x] and therefore f(i) = (i2 + 1)g(i) = 0, i.e.

f ∈ ker θ. This proves that (x2 + 1)R[x] = ker θ.

Another way of computing ker θ is to use the division algorithm for polynomials,

according to which any polynomial f ∈ R[x] can be written (in a unique way) as

f = (x2 + 1)g(x) + ax + b for some g ∈ R[x] and some a, b ∈ R. It follows that

f(i) = 0 iff ai + b =, iff a = 0 = b, iff f ∈ (x2 + 1)R[x].

The first homomorphism theorem implies now that R[x]/(x2 + 1)R[x] and C

are isomorphic. Explicitely, define a map φ : R[x]/(x2 + 1)R[x] by φ(f + (x2 +

1)R[x]) = f(i) = θ(f). It is weel defined, since if f +(x2 +1)R[x] = h+(x2 +1)R[x]

then f − h = (x2 + 1)g(x) for some polynomial g hence f(i) = g(i). It is now

starightforward to check that φ is an isomorphism (do it though).

2



Solution to Problem 2.21 Let
(

0 a
0 0

)

,
(

0 b
0 0

)

be in I and let
(

x y
0 z

)

∈ R. Clearly

(

0 a

0 0

)

−

(

0 b

0 0

)

=

(

0 a − b

0 0

)

∈ I

and
(

0 a

0 0

)(

x y

0 z

)

=

(

0 az

0 0

)

∈ I,

(

x y

0 z

)(

0 a

0 0

)

=

(

0 xa

0 0

)

∈ I.

This proves that I is an ideal.

Let
(

a 0
0 b

)

,
(

x 0
0 y

)

be in S. Then

(

a 0

0 b

)

−

(

x 0

0 y

)

=

(

a − x 0

0 b − y

)

∈ S

and
(

a 0

0 b

)(

x 0

0 y

)

=

(

ax 0

0 by

)

∈ S.

Thus S is a subring of R. It is not an ideal since
(

1 0
0 0

)

∈ S,
(

0 1
0 0

)

∈ R but

(

1 0

0 0

)(

0 1

0 0

)

=

(

0 1

0 0

)

6∈ S.

Define a function f : R/I −→ S by

f(

(

a b

0 c

)

+ I) =

(

a 0

0 c

)

.

Note that it is well defined, since if
(

a b
0 c

)

+ I =
(

x y
0 z

)

+ I then

(

a b

0 c

)

−

(

x y

0 z

)

=

(

a − x b − y

0 c − z

)

∈ I

so a − x = 0 = c − z, i.e. a = x and c = z. It is straightforward to check now that

f is a homomorphism (do it !) and it is clear that it is surjective. If A =
(

x y
0 z

)

+ I

is in the kernel of f then x = 0 = z, so
(

x y
0 z

)

∈ I and therefore A = 0. This shows

that f is injective and consequently an isomorphism.
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