
Problem 1. How many ideals does the ring Z/60 have?

Solution: Note that we have a surjective homomorphism f : Z −→ Z/60 which

sends an integer n to the remainder it has upon division by 60. The kernel of this

homomorphism is 60Z. By the correspondence theorem, there is a bijection between

ideals of Z/60 and those ideals of Z which contain 60Z. Recall now that every ideal

of Z is of the form mZ for unique m ≥ 0. Also nZ ⊆ mZ iff m|n (see Problem 1

of Homework 16). It follows that the ideals of Z which contain 60Z are in bijective

correspondence with positive divisors of 60. Since 60 = 22 · 3 · 5, the number of

divisors of 60 is (2 + 1)(1 + 1)(1 + 1) = 12 (in general, if n = pa1
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...pas

s
is a prime

factorization of n into powers of different primes then the number of positive divisors

of n is (a1 + 1)(a2 + 1)...(as + 1)). Thus Z/60 has 12 ideals.

Problem 2. Let I be the principal ideal (1+3i)Z[i] of the ring of Gaussian integers

Z[i].

a) Prove that Z ∩ I = 10Z.

b) Prove that Z + I = Z[i].

c) Prove that Z[i]/I is isomorphic to Z/10.

Solution: a) Z ∩ I consists of integrs which are of the form (1 + 3i)(a + bi) for

some inetegrs a, b. But (1+3i)(a+bi) = (a−3b)+(3a+b)i is an integer iff 3a+b = 0

and then (1 + 3i)(a + bi) = 10a. Thus all elements of Z ∩ I are divisible by 10, i.e.

Z∩I ⊆ 10Z. On the other hand, for any integer a we have 10a = (1+3i)(a+(−3a)i)

so 10Z ⊆ Z ∩ I. It follows that Z ∩ I = 10Z.

b) Let a + bi ∈ Z[i]. Note that

a + bi = (−9a + 3b) + (1 + 3i)(a + (b − 3a)i).

This shows that a + bi ∈ Z + I and consequently that Z + I = Z[i].

c) We use here the Third Isomorphism Theorem with R = Z[i], I = (1 + 3i)Z[i]

and S = Z. It asserts that (S + I)/I and S/S ∩ I are isomorphic. But in our case

(S + I)/I = Z[i]/(1 + 3i)Z[i] and S/S ∩ I = Z/10Z, which proves the result.

Problem 3. Let F be a finite field.
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a) Prove that there is unique prime number p such that F contains a subring iso-

morphic to the field Z/p. Hint: There is unique non-zero homomorphism from Z

to F ).

b) Prove that a vector space V over Z/p is finite iff it is finite dimensional. Prove

that the number of elements of V is a power of p. Hint. Consider a basis of V .

c) Explain how F can be considered as a vector space over Z/p, where p is defined

in a) and conclude that the number of elements of F is a power of p.

Solution: Consider the unique non-zero homorphism h : Z −→ F (see Problem

1 of Homework 14). Let nZ be the kernel of h. By the First Isomorphism Theorem,

the image of h is a subring of F isomorphic to Z/n. Since F is a finite field, Z/n

is a finite domain (every subring of a field is a domain). This implies that n = p

is a prime number (if n is not a prime then we know that Z/n has zero divisors).

Thus F contains a subring isomorphic to the field Z/p. Note that p is the smallest

positive integer k such that 1 + 1 + .. + 1 = 0 in F (1 is added k times). Thus p is

unique.

b) Let K be any finite field. If V is a finite dimensional vector space over K of

dimension d then V has a basis e1, ..., ed which means that every element of V can

be expressed in a unique way as a1e1 +a2e2 + ...+aded for some a1, ..., ad in K. This

means thet elements of V are in bijective correspondence with sequences a1, ..., ad

of elements of K (i.e with elements of Kd). The number of such sequences is finite

and equal to |K|d (each ai can be one of |K| elements of K). Thus V is finite and

has |K|d elements. If K = Z/p then |K| = p so the number of elements of V is a

power of p. Conversely, if V is finite then any subset of V is finite so V is finite

dimensional over K.

c) Let K be the subring of F isomorphic to the field Z/p. We can consider F as

a vector space over K, where the addition of vectors is just the ordinary addition

in F and the multiplication of elements of F (i.e. vectors) by elements of K (i.e.

scalars) comes from the ordinary multiplication in F (in this manner, any filed L

can be considered as a vector space over any subfield M of L). By b), the number

of elemetns in F is a power of p.
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