Homework

due on Monday, October 15

Read sections 3.1 and 3.3 of Lauritzen's book. Solve the following problems:

Problem 1. An element a of a ring R is called **nilpotent** if $a^m = 0$ for some m > 0.

a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the **nilradical** of R. Prove that 0 is the only nilpotent element of R/N.

b) Let R be a commutative ring and let $a_1, ..., a_n \in R$ be nilpotent. Set I for the ideal $\langle a_1, ..., a_n \rangle$ generated by $a_1, ..., a_n$. Prove that there is a positive integer N such that $x_1x_2...x_N = 0$ for any $x_1, ..., x_N$ in I (i.e. that $I^N = 0$).

c) Prove that the set of all nilpotent elements in the ring $M_2(\mathbb{R})$ is not an ideal.

d) Prove that if p is a prime and m > 0 then every element of $\mathbb{Z}/p^m\mathbb{Z}$ is either nilpotent or invertible.

e) Find the nilradical of $\mathbb{Z}/36\mathbb{Z}$ (by correspondence theorem, it is equal to $n\mathbb{Z}/36\mathbb{Z}$ for some n).

Problem 2. Let R be a commutative ring. For an ideal I of R define

$$\sqrt{I} = \{ x \in R : x^n \in I \text{ for some } n > 0 \}.$$

a) Prove that \sqrt{I} is an ideal. It is called the **radical** of *I*.

b) Prove that $\sqrt{\{0\}}$ is the nilradical of R.

c) Consider a surjective homomorphism $f : R \longrightarrow S$. Prove that in the correspondence theorem the nilradical of S corresponds to $\sqrt{\ker f}$.

d) Prove that R/\sqrt{I} has trivial nilradical.

Problem 3. Let R be a commutative ring. Let $I = \langle a_1, ..., a_n \rangle$, $J = \langle b_1, ..., b_m \rangle$. Prove that IJ is generated by the mn elements a_ib_j , i = 1, 2, ..., n, j = 1, 2, ..., m.