
Problem 1. Let R = Z[
√

2]. Let p be a prime such that 2 is a quadratic residue

modulo p so that k2 ≡ 2 (mod p) for some integer k. Let I = pR = {a + b
√

2 :

p|a, p|b}.

a) Prove that neither k +
√

2 nor k −
√

2 belong to I.

b) Use a) to prove that I is not a prime ideal.

Solution: a) This is obvious, since a+ b
√

2 ∈ I iff p|a and b|b. In our case b = 1

or b = −1, so p ∤ b.

b) Note that neither k +
√

2 nor k −
√

2 belong to I, yet

(k +
√

2)(k −
√

2) = k2 − 2 ∈ I

since p|(k2 − 2). Thus I is not a prime ideal.

Remark Similar argumet shows that if
√

n is not rational and p is a prime such

that n is a quadratic residue modulo p, then in the ring R = Z[
√

n] the ideal pR is

not prime.

Problem 2. Let R = Z[i] be the ring of Gaussian integers. Let p be a prime

number. Prove that pR is a maximal ideal iff −1 is a quadratic non-residue modulo

p (i.e. iff p ≡ 3 (mod 4) ). (Follow the example we discussed for Z[
√

2]. If you find

it easier, prove that 2R is not prime and 7R is prime. But the general case is not

much different.)

Solution: Suppose first that p ≡ 1 (mod 4) or p = 2 so −1 is a quadratic

residue modulo p. Thus k2 ≡ −1 (mod p) for some integer k. Note that neither

k + i nor k − i belong to pR but (k + i)(k − i) = k2 + 1 ∈ pR since p|(k2 + 1). Thus

pR is not a prime ideal. Since every maximal ideal is prime, pR is not maximal.

Suppose now that p ≡ 3 (mod 4) , so −1 is a quadratic non-residue modulo p.

Method I: We prove first that R/pR is an integral domain. Suppose that [(a+ bi) +

pR][(c+di)+pR] = 0 in R/pR. This means that (a+ bi)(c+di) = (ac− bd)+ (ad+

bc)i ∈ pR, i.e. p|ac − bd and p|ad + bc. In other words,

ac ≡ bd (mod p) and ad ≡ −bc (mod p) . (1)
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Suppose first that p does not divide any of the integrs a, b, c, d. Then let us multiply

the above congruences to get

a2cd ≡ −b2cd (mod p) , i.e. p|(a2 + b2)cd.

Since p ∤ cd, we get p|a2 + b2. Thus a2 ≡ −b2 (mod p) . Multiplying this congruence

by (b2)p−2 and using Fermat’s Little Theorem we get

(abp−2)2 ≡ −(b2)p−1 ≡ −1 (mod p)

which contradicts our assumption that −1 is a quadratic non-residue modulo p.

Thus our assumption that none of the numbers a, b, c, d is divisible by p is wrong.

At least one of these inetegrs is then divisible by p. Suppose that p|a (the other 3

possibilities are handled similarly). If p|b then (a+ bi)+ I = 0+ I. Otherwise, from

the congruences (1) we get p|c and p|d, so (c + di) + I = 0 + I.

We proved that if a product of two elements in R/pR is 0 then one of the factors

is 0. This shows that R/pR is a domain. Note that R/pR is finite (has p2 elements),

so it is a field. Thus pR is a maximal ideal.

Method II: Suppose that pR is not maximal. Then there is a maximal ideal J which

striclty contains pR. Thus R/J is a finite field. The number of elements in R/J

is smaller than the number of elements in R/pR, which is p2. On the other hand,

since p ∈ J , the characteristic of R/J is p. By Problem 3 c) of homework 18, the

number of elements in R/J is a power of p. The only power of p smaller than p2 is

p, so R/J has p elements. This means that it coincides with its subring Z/p, i.e. we

have a surjective homomorphism f : R −→ Z/p. Let x = f(i). Then

x2 = f(i)2 = f(i2) = f(−1) = −f(1) = −1.

But our assumption about p means that −1 is not a square in Z/p, a contradiction.

This shows that pR is maximal.
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