
Problem 1. We proved in class the following result

Theorem 1. Let R be a commutative unital ring and let a ∈ R be an element which

is not a zero divisors (so the sequence a, a2, a3, ... does not contain 0). The set of

ideals of R which are disjoint with the set {a, a2, a3, ...} contains maximal elements,

(i.e. ideals which are not contained in any larger ideal of this set) and any such

ideal is prime.

Use this theorem to prove that in a commutative unital ring the intersection of all

prime ideals is equal to the nilradical (see problem 1 of homework 19 for definition,

Problem 2 b) from homework 20 can be useful).

Solution: By Problem 2 b) from homework 20, if r is nilpotent and P is a

prime ideal then r ∈ P . This proves that the nilradical N is contained in every

prime ideal, hence in the intersection of all prime ideals. Suppose now that a is

not nilpotent. By the theorem from class cited above, there exists a prime ideal

Q which is disjoint form a, a2, .... In particular, a 6∈ Q and therefore a does not

belong to the intersection of all prime ideals. We showed that every element from N

belongs to the intersection of all prime ideals and no element outside of N bolongs

the intersection of all prime ideals. This means that N is equal to the intersection

of al prime ideals of R.

Problem 2. Let R be an integral domain. Suppose that 0 6= a ∈ R is such that aR

is a prime ideal. Prove that a is irreducible.

Remark. The ring R is not considered a prime ideal, i.e. prime ideals are proper

(I might have forgotten to add this in the definition).

Solution: Suppose that aR is a prime ideal. If a = xy then xy ∈ aR. Since aR

is prime, we have either x ∈ aR or y ∈ aR. In the former case, x = az for some

z ∈ R and therefore a = azy so zy = 1 and y is invertible. In the latter case, we see

simlarly that x is invertible. This shows that a is irreducible.

Problem 3. Consider the ring R = Z[
√

n] = {a + b
√

n : a, b ∈ Z}, where n is an

integer which is not a square (so
√

n is not rational).

a) Define a map f : R −→ R by f(a + b
√

n) = a − b
√

n. Prove that f is an

isomorphism.
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b) Consider the map N : R −→ Z defined by N(a + b
√

n) = a2 − nb2. Prove that

N(xy) = N(x)N(y) for all x, y ∈ R. Prove that x ∈ R is invertible iff N(x) = ±1.

Prove that if |N(x)| is a prime number then x is irreducible.

c) Prove that 4 + i is irreducible in Z[i]. Prove that the only invertible elements of

Z[i] are 1,−1, i,−i.

d) Prove that Z[
√

2] has infinitely many invertible elements. Hint: Consider 1+
√

2.

Note that product of invertible elements is invertible.

Solution: a) To see that f is a homomorphism note that

f((a + b
√

n) + (c + d
√

n)) = f((a + c) + (b + d)
√

n) = (a + c) − (b + d)
√

n =

= (a − b
√

n) + (c − d
√

n) = f((a + b
√

n)) + f((c + d
√

n))

and

f((a+ b
√

n)(c+d
√

n)) = f((ac+nbd)+ (bc+ad)
√

n) = (ac+nbd)− (bc+ad)
√

n =

= (a − b
√

n) + (cd
√

n) = f((a + b
√

n))f((c + d
√

n)).

Note now that f(f((a+ b
√

n)) = f((a− b
√

n) = (a+ b
√

n), i.e. f ◦ f is the identity,

so f its own inverse. Thus f is a bijection and therefore an isomorphism.

b) The first statement follows from the simple observation that N(x) = xf(x) for

all x ∈ R, where f is the isomorphism from a). Indeed, we have

N(xy) = xyf(xy) = xyf(x)f(y) = xf(x)yf(y) = N(x)N(y).

If N(x) = ±1 then xf(x) = ±1 so x is invertible. Conversely, assume that x is

invertible. Then xy = 1 for some y ∈ R and therefore

1 = N(1) = N(xy) = N(x)N(y).

Since both N(x), N(y) are integers, we must have N(x) = ±1.

Suppose now that |N(x)| is a prime number. If x = st for some s, t ∈ R, then

|N(x)| = |N(st)| = |N(s)||N(t)|. But |N(x)| is a prime number and |N(s)|, |N(t)|
are integers, so one of |N(s)|, |N(t)| must be equal to 1. By our previous observation,

this means that one of s, t is invertible. Thus x is irreducible.
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c) We apply b) (Recall that i =
√
−1, i.e. n = −1 in this case). We have N(4 +

i) = 16 + 1 = 17 is a prime, so 4 + i is irreducible. Also a + bi is invertible iff

N(a + bi) = a2 + b2 = ±1. Since a, b are integers, this holds only for a = ±1 and

b = 0 or a = 0, b = ±1. Thus the only invertible elements are 1,−1, i,−i.

d) Note that (1+
√

2)(−1+
√

2) = 1. This shows that 1+
√

2 is invertible in Z[
√

2].

It follows that (1 +
√

2)m is invertible for every integer m. Since 1 +
√

2 > 1, all

the numbers (1 +
√

2)m, m ∈ Z, are different so we have infinitely many invertible

elements.

Remark. It can be proved that the numbers ±(1 +
√

2)m, m ∈ Z are the only

invertible elements of Z[
√

2].
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