
Homework

due on Monday, October 22

Read sections 2.3.1-2.3.3 in Cameron’s book and sections 3.5-3.5.4 in Lauritzen’s

book. Solve the following problems:

Problem 1. Consider the ring R = Z[ω] = {a+bω : a, b ∈ Z} of Eisenstein integers,

where ω = (−1 +
√
−3)/2 (see Homework 17 for a proof that this is a ring). Recall

that ω2 + ω + 1 = 0. Let ω = (−1 −
√
−3)/2.

a) Prove that ω2 + ω + 1 = 0, ωω = 1, ω = ω2, ω3 = 1 = ω3.

b) Define a map f : R −→ R by f(a+bω) = a+bω. Prove that f is an isomorphism.

c) Consider the map N : R −→ Z defined by N(a + bω) = a2 − ab + b2. Prove that

N(xy) = N(x)N(y) for all x, y ∈ R. Prove that x ∈ R is invertible iff N(x) = ±1.

Prove that if |N(x)| is a prime number then x is irreducible.

d) Prove that the only invertible elements of Z[ω] are 1,−1, ω,−ω, ω,−ω.

e) Suppose that p is a prime and x, y ∈ R are such that xy ∈ pR. Prove that p|N(x)

or p|N(y).

f) Let p be an odd prime such that −3 is a quadratic non-residue modulo p. Prove

that if a, b are integers such that p|a2−ab+b2 then p|a and p|b. Hint. (2a−b)2+3b2 =

4(a2 − ab + b2).

g) Prove that if a, b are integers such that 2|a2 − ab + b2 then 2|a and 2|b.

h) Use e), f), g) to conclude that if p = 2 or p is an odd prime such that −3 is

a quadratic non-residue modulo p then pR is a prime ideal. Conclude that pR is

maximal (Hint: R/pR is finite).

i) Suppose now p is an odd prime such that −3 is a quadratic residue modulo p.

Prove that pR is not a prime ideal.

Solution: a) It is straightforward from the formula for the roots of a quadratic

polynomial that the roots of x2 + x + 1 are ω and ω (alternatively, just do the

computation). Note that (x − 1)(x2 + x + 1) = x3 − 1. Thus ω3 − 1 = 0 = ω3 − 1.
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Note that 1, ω, ω are the three roots of the polynomial x3 − 1. But if a3 = 1 then

(a2)3 = 1 so ω2 is also a root of x3 − 1 and hence we must have ω = ω2 (it can not

be 1 or ω). Finally, ωω = ωω2 = ω3 = 1. (Altenratively, all the equalities can be

verified by a simple explicit computation).

b) Clearly ω ∈ R so f maps R to R. To see that f is a homomorphism note that

f((a + bω) + (c + dω)) = f((a + c) + (b + d)ω) = (a + c) + (b + d)ω =

= (a + bω) + (c + dω) = f(a + bω) + f(c + dω)

and

f((a+ bω)(c+ dω)) = f((ac− bd)+ (ad+ bc− bd)ω) = (ac− bd)+ (ad+ bc− bd)ω =

= (a + bω)(c + dω) = f(a + bω)f(c + dω)

(alternatively, just note that f is simply the complex conjugation restricted to the

set R and use the properties of complex conjugation). Note now that f(f(z)) = z

for all z ∈ R, i.e. f ◦ f is the identity, so f its own inverse. Thus f is a bijection

and therefore an isomorphism.

c) The first statement follows from the simple observation that

N(a + bω) = a2 − ab + b2 = (a + bω)(a + bω) = (a + bω)f(a + bω)

so N(x) = xf(x) for all x ∈ R, where f is the isomorphism from a). In fact, we

have

N(xy) = xyf(xy) = xyf(x)f(y) = xf(x)yf(y) = N(x)N(y).

If N(x) = ±1 then xf(x) = ±1 so x is invertible. Conversely, assume that x is

invertible. Then xy = 1 for some y ∈ R and therefore

1 = N(1) = N(xy) = N(x)N(y).

Since both N(x), N(y) are integers, we must have N(x) = ±1.

Suppose now that |N(x)| is a prime number. If x = st for some s, t ∈ R, then

|N(x)| = |N(st)| = |N(s)||N(t)|. But |N(x)| is a prime number and |N(s)|, |N(t)|
are integers, so one of |N(s)|, |N(t)| must be equal to 1. By our previous observation,

this means that one of s, t is invertible. Thus x is irreducible.
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Remark: Note that N(x) is non-negative for all x ∈ R, so the absolute value above

is not needed and N(x) = −1 is not possible.

d) By c), the element a+bω is invertible iff a2−ab+b2 = 1. Note that a2−ab+b2 =

(a − b/2)2 + 3b2/4 = 3a2/4 + (b − a/2)2. Since a, b are integers, we see that if

a2 − ab + b2 = 1 then both |a| < 2 and |b| < 2. Now it is straightforward to see

that the only integral solutions to a2 − ab + b2 = 1 are (1, 0), (−1, 0), (0, 1), (0,−1),

(−1,−1, ), (1, 1). These correspond to 1,−1, ω,−ω, ω,−ω respectively.

e) If xy ∈ pR then xy = pz for some z ∈ R. Thus

N(x)N(y) = N(xy) = N(pz) = N(p)N(z) = p2N(z).

Since the values of N are integers, we see that p|N(x)N(y). It follows that p|N(x)

or p|N(y).

f) Suppose that p|a2 − ab + b2. Since (2a − b)2 + 3b2 = 4(a2 − ab + b2), we have

p|(2a − b)2 + 3b2, i.e (2a − b)2 ≡ −3b2 (mod p) . If p ∤ b then multiplying the

congruence by bp−3 and using Fermat’s Little Theorem, we get

[(2a − b)b(p−3)/2]2 ≡ −3bp−1 ≡ −3 (mod p)

which contradicts our assumption that −3 is a quadratic non-residue mudulo p.

Thus we must have p|b. Since p|a2 − ab + b2, we have p|a2 so also p|a.

g) If both a, b are odd or if one of them is odd and the other even then a2 − ab + b2

is odd. On the other hand, if both a, b are even then clearly a2 − ab + b2 is even.

This proves the claim.

h) Suppose xy ∈ pR, where x = a + bω, y = c + dω. By e), we have p|N(x) or

p|N(y). If p|N(x) = a2−ab+b2 then by f) and g) we get p|a and p|b so a+bω ∈ pR.

Similarly, if p|N(y) then c + dω ∈ pR. This proves that pR is a prime ideal. Note

now that R/pR has p2 elements so it is a finite domain, hence a field. It follows that

pR is maximal.

i) Suppose that −3 is a quadratic residue modulo p, so k2 ≡ −3 (mod p) for some

integer k. We may assume that k = 2l − 1 is odd (if not, replace k by p + k). To

show that pR is not prime it suffices to find integers a, b such that x = a + bω,
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y = a + bω = a − b − bω do not belong to pR but xy = a2 − ab + b2 belongs to

pR. This will be the case if p ∤ b but p|a2 − ab + b2. Let us take a = l, b = 1 so

a2 − ab+ b2 = l2 − l +1 = [(2l− 1)2 +3]/4 = (k2 +3)/4. Since p is odd and p|k2 +3,

we see that p|l2 − l + 1. We showed that neither x = l + ω nor y = l + ω belong to

pR but xy ∈ pR. Thus pR is not prime.

Problem 2. Let R be an integral domain and let a ∈ R be irrreducible but not

prime. Prove that if P is a prime ideal of R and a ∈ P then P is not principal.

Solution: Suppose that a is irreducible but not prime and let P be a prime

ideal containing a. Thus aR ⊆ P but aR 6= P (since a is not prime). Recall that a

is irreducible iff aR is maximal among all proper principal ideals. Since P is proper

and bigger than aR, it can not be principal.

Another argument: Suppose that P = bR is principal. Since P is proper, b is not

invertible. Since a ∈ P = bR, we have a = bc for some c ∈ R. But a is irreducible,

so either b or c is invertible. We alread know that b is not invertible, so c is invertible

and therefore aR = bR, a contradiction. It proves that P is not principal.

Problem 3. Ler R = Z[
√
−6].

a) Prove that
√
−6, 2 and 3 are irreducible in R (use the map N defined in problem

3 of homework 22). Prove that 1,−1 are the only elements invertible in R.

b) Note that −6 =
√
−6

√
−6 = (−2) · 3 and conclude that R is not a UFD.

c) Prove that the ideal P =< 2,
√
−6 > satisfies P · P = 2R.

Remark. In particular, 2 ∈ P · P . Note however that 2 cannot be written as ab

with a ∈ P and b ∈ P (since 2 is irreducible). Thus we get an example justifying

our answer to v) of Problem 8 from homework 14.

d) Show that P and 1 + P are the only cosets of P in R. Conclude that R/P has

two elements and is a field. Use problem 2 to show that P is not principal.

Solution: a) We will use te map N defined by N(a + b
√
−6) = a2 + 6b2. Note

that if b 6= 0 then N(a + b
√
−6) ≥ 6. Recall now that we proved in Problem 3 of

homework 22 that a + b
√
−6 is invertible iff N(a + b

√
−6) = ±1. Thus a + b

√
−6
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is invertible iff b = 0 and a = ±1, which proves that 1,−1 are the only invertible

elements of R.

Observe now that if a + b
√
−6 is not invertible then either b 6= 0 or |a| ≥ 2, so

in both cases N(a + b
√
−6) ≥ 4 Consequently, if neither x nor y is invertible then

N(xy) = N(x)N(y) ≥ 4 · 4 = 16. In other words, if z ∈ R is not irreducible then

N(z) ≥ 16. But N(
√
−6) = 6, N(2) = 4, N(3) = 9, so 2, 3,

√
−6 are all irreducible.

b) By a), −6 =
√
−6

√
−6 = (−2) · 3 are two irreducible factorizations of −6. .

Since 1,−1 are the only units of R, neither 2 nor 3 is associated to
√
−6. Thus

these factorizations are not equivalent and therefore R is not a UFD.

c) Since P =< 2,
√
−6 >, we have (by Problem 3 of homework 19)

P · P =< 2 · 2, 2 ·
√
−6,

√
−6 ·

√
−6 >=< 4, 2 ·

√
−6,−6 >

We see that every generator of P · P belongs to 2R, so P · P ⊆ 2R. On the other

hand, 2 = (−1) · 4 + (−1)(−6) ∈ P · P (since both 4 and −6 are in P · P ), so

2R ⊆ P · P . This proves that 2R = P · P .

d) Clearly 1 6∈ P (otherwise we would have R = P and P 2 = R, which contradicts

c)) so P and 1 + P are different cosets. Now if x = a + b
√
−6 and a = 2c is even

then x = c · 2 + b
√
−6 ∈ P , so x + P = P . If x = a + b

√
−6 and a = 2c + 1 is

odd then x − 1 = c · 2 + b
√
−6 ∈ P , so x + P = 1 + P . This proves that P and

1 + P are the only cosets of P in R. Thus R/P has 2 elements and is isomorpphic

to the field Z/2. Thus P is a mximal ideal, so also a prime ideal. Note that 2 ∈ P .

Recall that 2 is irreducicble. Note however that 2 is not prime since
√
−6 6∈ 2R bur

√
−6

2
= −6 ∈ 2R. By problem 2, P is not principal.
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