Homework
due on Monday, October 22

Read sections 2.3.1-2.3.3 in Cameron’s book and sections 3.5-3.5.4 in Lauritzen’s

book. Solve the following problems:

Problem 1. Consider the ring R = Z[w| = {a+bw : a,b € Z} of Eisenstein integers,
where w = (=1 + v/—3)/2 (see Homework 17 for a proof that this is a ring). Recall
that w? +w+1=0. Let w = (=1 — v/=3)/2.

a) Prove that 0> + w+1 =0, wo =1, 0w = w?, ¥ =1 = o°.
b) Define amap f: R — R by f(a+bw) = a+bw. Prove that f is an isomorphism.

c¢) Consider the map N : R — Z defined by N(a + bw) = a* — ab + b*. Prove that
N(zy) = N(x)N(y) for all z,y € R. Prove that x € R is invertible iff N(x) = +£1.

Prove that if |N(x)| is a prime number then x is irreducible.
d) Prove that the only invertible elements of Z|w| are 1, -1, w, —w, w, —.

e) Suppose that p is a prime and x,y € R are such that xy € pR. Prove that p|N(x)
or p|N(y).

f) Let p be an odd prime such that —3 is a quadratic non-residue modulo p. Prove
that if a, b are integers such that p|a®?—ab+b? then p|a and p|b. Hint. (2a—b)*+3b* =
4(a® — ab +b?).

g) Prove that if a,b are integers such that 2|a® — ab + b? then 2|a and 21b.

h) Use e), f), g) to conclude that if p = 2 or p is an odd prime such that —3 is
a quadratic non-residue modulo p then pR is a prime ideal. Conclude that pR is

maximal (Hint: R/pR is finite).

i) Suppose now p is an odd prime such that —3 is a quadratic residue modulo p.

Prove that pR is not a prime ideal.

Solution: a) It is straightforward from the formula for the roots of a quadratic
polynomial that the roots of 22 + z + 1 are w and @ (alternatively, just do the

computation). Note that (z —1)(z? +2z+1) =2 —1. Thusw® - 1=0=0u° — 1.



Note that 1,w,w are the three roots of the polynomial 2* — 1. But if a® = 1 then
(a*)® =1 so w? is also a root of 3 — 1 and hence we must have @ = w? (it can not
be 1 or w). Finally, ww = ww? = w? = 1. (Altenratively, all the equalities can be

verified by a simple explicit computation).
b) Clearly @ € R so f maps R to R. To see that f is a homomorphism note that
flla+bw)+ (c+dw)) = f((a+c)+ (b+dw)=(a+c)+ (b+d)w =
= (a+bw) + (c+dw) = fa+ bw) + f(c+ dw)
and
f((a+bw)(c+dw)) = f((ac—bd) + (ad+ bc — bd)w) = (ac — bd) + (ad + bc — bd)w =

= (a+bw0)(c+ dw) = fla+ bw)f(c+ dw)

(alternatively, just note that f is simply the complex conjugation restricted to the
set R and use the properties of complex conjugation). Note now that f(f(z)) = z
for all z € R, i.e. fo f is the identity, so f its own inverse. Thus f is a bijection

and therefore an isomorphism.
c) The first statement follows from the simple observation that
N(a+bw)=a*—ab+b* = (a+bw)(a + bw) = (a + bw) fla + bw)

so N(z) = zf(x) for all € R, where f is the isomorphism from a). In fact, we

have
N(zy) = zyf(xy) = wyf(2)f(y) = = f(2x)yf(y) = N(@)N(y).
If N(z) = %1 then xf(x) = %1 so z is invertible. Conversely, assume that z is

invertible. Then xy = 1 for some y € R and therefore
1= N(1) = N(zy) = N(z)N(y).

Since both N(z), N(y) are integers, we must have N(z) = £1.

Suppose now that |N(x)| is a prime number. If x = st for some s,t € R, then
IN(x)| = |N(st)] = |N(s)||N(t)]. But |N(z)| is a prime number and |N(s)|, |N(t)]
are integers, so one of [N (s)|, | N (t)| must be equal to 1. By our previous observation,

this means that one of s, t is invertible. Thus z is irreducible.
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Remark: Note that N(z) is non-negative for all z € R, so the absolute value above

is not needed and N(x) = —1 is not possible.

d) By c), the element a+ bw is invertible iff a*> —ab+b* = 1. Note that a* —ab+b* =
(a —b/2)? + 3b*/4 = 3a*/4 + (b — a/2)*. Since a,b are integers, we see that if
a’? — ab + b*> = 1 then both |a| < 2 and |[b| < 2. Now it is straightforward to see
that the only integral solutions to a? —ab+ b* = 1 are (1,0), (—1,0), (0,1), (0, —1),

(—1,—1,), (1,1). These correspond to 1, —1,w, —w,w, —w respectively.
e) If zy € pR then zy = pz for some z € R. Thus
N(z)N(y) = N(zy) = N(pz) = N(p)N(z) = p*N(2).

Since the values of N are integers, we see that p|N(z)N(y). It follows that p|N(z)
or pIN(y).

f) Suppose that pla? — ab + b*. Since (2a — b)* + 3b* = 4(a® — ab + b*), we have
pl(2a — b)? + 302, ie (2a —b)? = —3b? (mod p) . If p t b then multiplying the

congruence by b*~3 and using Fermat’s Little Theorem, we get
[(2a — b)bP=/2)2 = —3pP~1 = —3 (mod p)

which contradicts our assumption that —3 is a quadratic non-residue mudulo p.

Thus we must have p|b. Since pla® — ab + b?, we have p|a? so also pla.

g) If both a,b are odd or if one of them is odd and the other even then a* — ab + b?
is odd. On the other hand, if both a,b are even then clearly a? — ab + b? is even.

This proves the claim.

h) Suppose zy € pR, where © = a + bw, y = ¢ + dw. By e), we have p|N(z) or
p|N(y). If p|N(x) = a®> —ab+b?* then by f) and g) we get p|a and p|b so a+bw € pR.
Similarly, if p|N(y) then ¢+ dw € pR. This proves that pR is a prime ideal. Note
now that R/pR has p? elements so it is a finite domain, hence a field. It follows that

pR is maximal.

i) Suppose that —3 is a quadratic residue modulo p, so k* = —3 (mod p) for some
integer k. We may assume that & = 2] — 1 is odd (if not, replace k by p + k). To
show that pR is not prime it suffices to find integers a,b such that * = a + bw,
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y=a+bw =a—0b— bw do not belong to pR but xy = a®> — ab + b* belongs to
pR. This will be the case if p { b but pla® — ab + b*. Let us take a = [, b = 1 so
a?—ab+b*=01—1+1=[(21—1)*+3]/4 = (k*+3)/4. Since p is odd and p|k*+ 3,
we see that p|l? — [ + 1. We showed that neither x = [ 4+ w nor y = [ + @ belong to
pR but xy € pR. Thus pR is not prime.

Problem 2. Let R be an integral domain and let a € R be irrreducible but not
prime. Prove that if P is a prime ideal of R and a € P then P is not principal.

Solution: Suppose that a is irreducible but not prime and let P be a prime
ideal containing a. Thus aR C P but aR # P (since a is not prime). Recall that a
is irreducible iff aR is maximal among all proper principal ideals. Since P is proper

and bigger than aR, it can not be principal.

Another argument: Suppose that P = bR is principal. Since P is proper, b is not
invertible. Since a € P = bR, we have a = bc for some ¢ € R. But a is irreducible,
so either b or ¢ is invertible. We alread know that b is not invertible, so ¢ is invertible

and therefore aR = bR, a contradiction. It proves that P is not principal.

Problem 3. Ler R = Z[/—6].

a) Prove that /—6, 2 and 3 are irreducible in R (use the map N defined in problem

3 of homework 22). Prove that 1, —1 are the only elements invertible in R.
b) Note that —6 = v/—64/—6 = (—2) - 3 and conclude that R is not a UFD.
c) Prove that the ideal P =< 2,1/—6 > satisfies P- P = 2R.

Remark. In particular, 2 € P - P. Note however that 2 cannot be written as ab
with a € P and b € P (since 2 is irreducible). Thus we get an example justifying

our answer to v) of Problem 8 from homework 14.

d) Show that P and 1 + P are the only cosets of P in R. Conclude that R/P has

two elements and is a field. Use problem 2 to show that P is not principal.

Solution: a) We will use te map N defined by N(a + bv/—6) = a® + 6b*. Note
that if b # 0 then N(a + by/—6) > 6. Recall now that we proved in Problem 3 of
homework 22 that a + b\/—6 is invertible iff N(a + by/—6) = £1. Thus a + b\/—6



is invertible iff b = 0 and @ = £1, which proves that 1, —1 are the only invertible
elements of R.

Observe now that if a + by/—6 is not invertible then either b # 0 or |a| > 2, so
in both cases N(a + by/—6) > 4 Consequently, if neither z nor y is invertible then
N(zy) = N(x)N(y) > 4 -4 = 16. In other words, if z € R is not irreducible then
N(z) > 16. But N(v/=6) =6, N(2) =4, N(3) =9, so 2, 3,1/—6 are all irreducible.

b) By a), —6 = /—6y/—6 = (—2) - 3 are two irreducible factorizations of —6.
Since 1, —1 are the only units of R, neither 2 nor 3 is associated to v/—6. Thus

these factorizations are not equivalent and therefore R is not a UFD.

¢) Since P =< 2,4/—6 >, we have (by Problem 3 of homework 19)
P-P=<2-22-vV-6,V—6-vV—6>=<4,2-vV/—6,—6>

We see that every generator of P - P belongs to 2R, so P- P C 2R. On the other
hand, 2 = (—=1) -4 + (—1)(—6) € P - P (since both 4 and —6 are in P - P), so
2R C P - P. This proves that 2R = P - P.

d) Clearly 1 € P (otherwise we would have R = P and P? = R, which contradicts
c)) so P and 1+ P are different cosets. Now if x = a + by/—6 and a = 2c is even
then x =c-24+by/—-6€ P,sox+P =P. f t =a+b/—6 and a = 2c+ 1 is
odd then z — 1 =¢-2+by/—6 € P, so x + P = 1 4+ P. This proves that P and
1 + P are the only cosets of P in R. Thus R/P has 2 elements and is isomorpphic
to the field Z/2. Thus P is a mximal ideal, so also a prime ideal. Note that 2 € P.
Recall that 2 is irreducicble. Note however that 2 is not prime since v/—6 ¢ 2R bur
\/—762 = —6 € 2R. By problem 2, P is not principal.



