Problem 1. Consider the ring R = Z[w] = {a+bw : a,b € Z} of Eisenstein integers,
where w = (=1 + v/—3)/2 (see Homeworks 17, 23 for various facts about R).

a) Let = a + bw, y = ¢+ dw be elements of R such that x # 0. Prove that the

complex number y/x can be written as u + ww for some rational numbers u, w.

b) Consider the map N : R — Z defined by N(a + bw) = a* — ab + b? (so N(z)
is just the square of the absolute value of the complex number z). Use N to prove
that R is an Euclidean domain (Hint: Mimic the argument from class for the ring

of Gaussian integers).

¢) Let £ = a+ bw € R. Prove that there exists ¢ + dw € R which is associated with
x and such that ¢ > 0, d > 0 (Hint: Use d) of Problem 1 from homework 23).

d) Let p be an odd prime such that —3 is a quadratic non-residue modulo p . Prove
that p is irreducible in R. (Use h) of Problem 1 from homework 23). Prove the same
for p = 2.

e) Suppose that p is an odd prime such that —3 is a quadratic residue modulo p.
Prove that p is not irreducible in R. Conclude that there exist positive integers a, b

such that p = a® — ab + b? (use ¢)).

f) Use quadrartic reciprocity to prove that —3 is a quadratic residue modulo p iff
p=1 (mod 3) .

Solution: a) This follows from the following computation

y c+dw (ct+dw)(a+bw) ac+bd+adw+bco  ac+bd—bc  ad—be

: ot (attw)attm | @—a+? -t d—ar”

(we used the equality w = —1 — w).

b) Let x = a + bw, y = ¢+ dw be elements of R, x # 0. By a) there are rational
numbers u, w such that y/z = u+ww. There are integers k, m such that ju—k| < 1/2
and lw—m| <1/2. Set p=u—k and ¢ = w —m. Thus y/z = (k+lw) + (p + qw).
In other words,

y=(k+lw)z+ (p+quw)e.

Clearly, k +lw e Rsor = (p+quw)r =y — (k+lw)x € R. Thus y = (k+ lw)x + 7



and
N(r) = N((p+ qw)z) = N(p+ qw)N(z) = (p* — pg + ¢*) N ().

Since |p| < 1/2 and |¢| < 1/2, we have p* —pg+¢* < |p|* +|pl|¢| + |q|* < 3/4. Thus
N(r) <3N(z)/4 < N(x). This shows that N is an Euclidean function on R and R

is an Fuclidean domain.

c) Since 1. — 1, w, —w,w?, —w? are the only elements invertible in R, the elements

associated with a+bw are a+bw, (a+bw)-(—1) = —a—bw, (a+bw)w = —b+(a—b)w,
(a+bw)(—w) =b+(b—a)w, (a+bw)w? = (b—a) —aw, (a+bw)(—w?) = (a—b) + aw.
If both a,b are non-negative then take ¢ = a,d = b. If both a,b are non-positive,
take ¢ = —a,d = —b. If a is non-negative and b < 0 take ¢ = a — b,d = a. Finally,

if a < 0 and b is nonnegative, take ¢ = b,d = b — a.

d) Suppose that p = zy for some x,y € R. Thus p*> = N(p) = N(zy) = N(x)N(y).
It follows that one of N(x), N(y) is divisible by p. Suppose that p|N(x) (the
other possibility is handled the same way). This means that if z = a + bw then
p|N(z) = a®> — ab + b*. By Problem 1 f) from homework 23, we have p|a and p|b so
p?*|N(z). From p? = N(z)N(y) it follows now that N(z) = p? and N(y) = 1. Thus
y is invertible by Problem 1 ¢) for homework 23. This proves that p is irreducible.

Alternatively, from Problem 1 h) for homework 23 the ideal pR is prime. Thus p is

prime and hence irreducible.

e) In Problem 1 i) from homework 23 we showed that pR is not prime, i.e. p
is not a prime element. Since R is UFD by b), we see that p is not irreducible
(recall that in a UFD irreducible elements are prime). Thus p = zy for some x,y
non-invertible in R. Tt follows that p? = N(p) = N(zy) = N(x)N(y). Since
neither = nor y is invertible, both N(z) and N(y) are larger than 1 so we must have
N(z) =p= N(y). By c) thereis a+bw € R such that a > 0,b >0 and a+bw € R
is associated to z. Thus p = N(z) = N(a + bw) = a* — ab + b* (we use here the
simple observation that if x,y are associated then x = yu for some invertible u so
N(z) = N(yu) = N(y)N(u) = N(y)).

f) Recall that —3 is a quadratic residue modulo p iff the Legendre symbol (_73) = 1.



The quadratic reciprocity gives us

(3B = (1) P-DE-D/A _ (q)e-n/2,

Thus

Recall that

—L e
(=)= (1)
Consequently,
(29) = (Z)G) = (DD )2 = (),
Clearly

p 1 ifp=1 (mod3);
3 —1 ifp=2 (mod 3)
This proves that (_73) =1iff p=1 (mod 4) .
Problem 2. Let R be a PID. Consider two elements a,b € R. Since R is a PID,

there is d € R such that aR + bR = dR. Prove that for any ¢ € R we have c|d iff
cla and c|b. What would be appropriate to call d?

Solution: Note that aR C dR and bR C dR so d|a and d|b. Suppose that c|d.
Then clearly c|a and ¢|b. Conversely, if ¢|a and ¢|b then aR C ¢R and bR C cR. Since
cR is an ideal, we have aR + bR C cR. In other words, dR C c¢R and consequently
cld.

In analogy with the integers, d should be called a greatest common divisor of a
and b.



