
Problem 1. Consider the ring R = Z[ω] = {a+bω : a, b ∈ Z} of Eisenstein integers,

where ω = (−1 +
√
−3)/2 (see Homeworks 17, 23 for various facts about R).

a) Let x = a + bω, y = c + dω be elements of R such that x 6= 0. Prove that the

complex number y/x can be written as u + wω for some rational numbers u,w.

b) Consider the map N : R −→ Z defined by N(a + bω) = a2 − ab + b2 (so N(x)

is just the square of the absolute value of the complex number x). Use N to prove

that R is an Euclidean domain (Hint: Mimic the argument from class for the ring

of Gaussian integers).

c) Let x = a + bω ∈ R. Prove that there exists c + dω ∈ R which is associated with

x and such that c ≥ 0, d ≥ 0 (Hint: Use d) of Problem 1 from homework 23).

d) Let p be an odd prime such that −3 is a quadratic non-residue modulo p . Prove

that p is irreducible in R. (Use h) of Problem 1 from homework 23). Prove the same

for p = 2.

e) Suppose that p is an odd prime such that −3 is a quadratic residue modulo p.

Prove that p is not irreducible in R. Conclude that there exist positive integers a, b

such that p = a2 − ab + b2 (use c)).

f) Use quadrartic reciprocity to prove that −3 is a quadratic residue modulo p iff

p ≡ 1 (mod 3) .

Solution: a) This follows from the following computation

y

x
=

c + dω

a + bω
=

(c + dω)(a + bω)

(a + bω)(a + bω
=

ac + bd + adω + bcω

a2 − ab + b2
=

ac + bd − bc

a2 − ab + b2
+

ad − bc

a2 − ab + b2
ω

(we used the equality ω = −1 − ω).

b) Let x = a + bω, y = c + dω be elements of R, x 6= 0. By a) there are rational

numbers u,w such that y/x = u+wω. There are integers k,m such that |u−k| ≤ 1/2

and |w −m| ≤ 1/2. Set p = u− k and q = w −m. Thus y/x = (k + lω) + (p + qω).

In other words,

y = (k + lω)x + (p + qω)x.

Clearly, k + lω ∈ R so r = (p + qω)x = y − (k + lω)x ∈ R. Thus y = (k + lω)x + r
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and

N(r) = N((p + qω)x) = N(p + qω)N(x) = (p2 − pq + q2)N(x).

Since |p| ≤ 1/2 and |q| ≤ 1/2, we have p2 − pq + q2 ≤ |p|2 + |p||q|+ |q|2 ≤ 3/4. Thus

N(r) ≤ 3N(x)/4 < N(x). This shows that N is an Euclidean function on R and R

is an Euclidean domain.

c) Since 1. − 1, ω,−ω, ω2,−ω2 are the only elements invertible in R, the elements

associated with a+bω are a+bω, (a+bω)·(−1) = −a−bω, (a+bω)ω = −b+(a−b)ω,

(a+bω)(−ω) = b+(b−a)ω, (a+bω)ω2 = (b−a)−aω, (a+bω)(−ω2) = (a−b)+aω.

If both a, b are non-negative then take c = a, d = b. If both a, b are non-positive,

take c = −a, d = −b. If a is non-negative and b < 0 take c = a − b, d = a. Finally,

if a < 0 and b is nonnegative, take c = b, d = b − a.

d) Suppose that p = xy for some x, y ∈ R. Thus p2 = N(p) = N(xy) = N(x)N(y).

It follows that one of N(x), N(y) is divisible by p. Suppose that p|N(x) (the

other possibility is handled the same way). This means that if x = a + bω then

p|N(x) = a2 − ab + b2. By Problem 1 f) from homework 23, we have p|a and p|b so

p2|N(x). From p2 = N(x)N(y) it follows now that N(x) = p2 and N(y) = 1. Thus

y is invertible by Problem 1 c) for homework 23. This proves that p is irreducible.

Alternatively, from Problem 1 h) for homework 23 the ideal pR is prime. Thus p is

prime and hence irreducible.

e) In Problem 1 i) from homework 23 we showed that pR is not prime, i.e. p

is not a prime element. Since R is UFD by b), we see that p is not irreducible

(recall that in a UFD irreducible elements are prime). Thus p = xy for some x, y

non-invertible in R. It follows that p2 = N(p) = N(xy) = N(x)N(y). Since

neither x nor y is invertible, both N(x) and N(y) are larger than 1 so we must have

N(x) = p = N(y). By c) there is a + bω ∈ R such that a ≥ 0, b ≥ 0 and a + bω ∈ R

is associated to x. Thus p = N(x) = N(a + bω) = a2 − ab + b2 (we use here the

simple observation that if x, y are associated then x = yu for some invertible u so

N(x) = N(yu) = N(y)N(u) = N(y)).

f) Recall that −3 is a quadratic residue modulo p iff the Legendre symbol (−3
p

) = 1.
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The quadratic reciprocity gives us

(
3

p
)(

p

3
) = (−1)(p−1)(3−1)/4 = (−1)(p−1)/2.

Thus

(
3

p
) = (

p

3
)(−1)(p−1)/2.

Recall that

(
−1

p
) = (−1)(p−1)/2.

Consequently,

(
−3

p
) = (

−1

p
)(

3

p
) = (−1)(p−1)/2(

p

3
)(−1)(p−1)/2 = (

p

3
).

Clearly

(
p

3
) =







1 if p ≡ 1 (mod 3) ;

−1 if p ≡ 2 (mod 3)

This proves that (−3
p

) = 1 iff p ≡ 1 (mod 4) .

Problem 2. Let R be a PID. Consider two elements a, b ∈ R. Since R is a PID,

there is d ∈ R such that aR + bR = dR. Prove that for any c ∈ R we have c|d iff

c|a and c|b. What would be appropriate to call d?

Solution: Note that aR ⊆ dR and bR ⊆ dR so d|a and d|b. Suppose that c|d.

Then clearly c|a and c|b. Conversely, if c|a and c|b then aR ⊆ cR and bR ⊆ cR. Since

cR is an ideal, we have aR + bR ⊆ cR. In other words, dR ⊆ cR and consequently

c|d.

In analogy with the integers, d should be called a greatest common divisor of a

and b.
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