
Homework

due on Wednesday, October 24

Problem 1. Find a greatest common divisor d(x) of the polynomials p(x) = x3 +

4x2 + x − 6 and q(x) = x5 − 6x + 5 in the ring Q[x] and find a(x), b(x) ∈ Q[x] such

that d(x) = a(x)p(x) + b(x)q(x).

Solution: Dividing x5 − 6x + 5 by x3 + 4x2 + x − 6 we get x2 − 4x + 15 and

remainder −50x2 − 45x + 95. Thus

x5 − 6x + 5 = (x2 − 4x + 15)(x3 + 4x2 + x − 6) + (−50x2 − 45x + 95)

Now divide x3 + 4x2 + x − 6 by −50x2 − 45x + 95 to get

x3 + 4x2 + x − 6 = (
−1

50
x −

31

500
)(−50x2 − 45x + 95) + (

11

100
x −

11

100
).

Next divide −50x2 − 45x + 95 by 11

100
x − 11

100
to get

−50x2 − 45x + 95 = (
−5000

11
x −

9500

11
)(

11

100
x −

11

100
).

It follow that d(x) = 11

100
x − 11

100
. Working backwards, we have

d(x) = x3 + 4x2 + x − 6 − (
−1

50
x −

31

500
)(−50x2 − 45x + 95) =

x3 + 4x2 + x − 6 − (
−1

50
x −

31

500
)(x5 − 6x + 5 − (x2 − 4x + 15)(x3 + 4x2 + x − 6)) =

(
1

50
x +

31

500
)(x5 − 6x + 5) + (

−1

50
x −

31

500
)(x2 − 4x + 15) + 1](x3 + 4x2 + x − 6) =

(
1

50
x +

31

500
)(x5 − 6x + 5) + (

−1

50
x3 +

9

500
x2 −

26

500
x +

35

500
)(x3 + 4x2 + x − 6).

Problem 2. Let I be an ideal of the ring R. Define I[x] as the subset of R[x] which

consists of all the polynomials in R[x] whose all coefficients belong to I. Prove that

I[x] is an ideal of R[x] and that R[x]/I[x] is naturally isomorphic to the polynomial

ring (R/I)[x].

Solution: Let f : R −→ R/I be the canonical homomorphism. Since R/I is

a subring of (R/I)[x] we can consider f as a homomorphism f : R −→ (R/I)[x].

By the universal property of polynomials rings, there exists unique homomorphism

f∗ : R[x] −→ (R/I)[x] which agrees with f on the constants R and which sends x
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to x. Explicitely, f∗(p0 +p1x+ ...+p
m
xm) = f(p0)+f(p1)x+ ...+f(p

m
)xm. Since f

is surjective, it is clear that f∗ is surjective. A polynomial p = p0 + p1x + ...+ p
m
xm

is in the kernel of f∗ iff all coefficients of f∗(p) are zero, i.e. iff f(p0) = f(p1) = ... =

f(p
m

) = 0. This means that all coefficients of p belong to ker f = I, which by the

definition of I[x] means that p ∈ I[x]. We see that ker f∗ = I[x]. This proves in

particular that I[x] is an ideal (a direct verification of this fact is also quite simple).

By the first isomorphism theorem, we get an isomorphism of R[x]/I[x] = R[x]/ ker f∗

and (R/I)[x].

Problem 3. Let R = Z[ω] be the ring of Eisenstein integers. Consider the homo-

morphism f : Z[x] −→ R such that f(m) = m for m ∈ Z and f(x) = ω (there is

unique such homomorphism by the result form class).

a) Prove that ker f = (x2 + x + 1)Z[x] and conclude that R is naturally isomorphic

to the ring Z[x]/(x2 + x + 1)Z[x].

b) Prove that x2 + x + 1 is a prime element in Z[x].

c) Prove that the ideal M =< 2, x2 + x + 1 > is not principal.

d) Prove that Z[x]/M and R/2R are isomorphic. Conclude that M is maximal.

Solution: The homomorphism f : Z[x] −→ R is defined by f(p0 + p1x + ... +

p
m

xm) = p0 + p1ω + ... + p
m

ωm = p(ω).

a) Clearly f(1 + x + x2) = 1 + ω + ω2 = 0 so (x2 + x + 1)Z[x] ⊆ ker f . Suppose now

that p ∈ Z[x] is an arbitrary polynomial. Since x2 + x + 1 is monic, the division

algorithm for polynomials implies that there are polynomials h, r ∈ Z[x] such that

p(x) = h(x)(x2+x+1)+r(x) and the degree of r is smaller than 2. Thus r(x) = ax+b

for some integers a, b. It follows that

f(p) = p(ω) = h(ω)(ω2 + ω + 1) + r(ω) = aω + b.

Clearly, f(p) = 0 iff a = b = 0, i.e. iff r = 0. This proves that p ∈ ker f iff

x2 + x + 1|p, i.e. ker f = (x2 + x + 1)Z[x]. Since a + bω = f(a + bx) for any integers

a, b, we see that f is surjective. By the first isomorphism theorem, R is isomorphic

to the ring Z[x]/(x2 + x + 1)Z[x].
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b) Since R is a domain, the ring Z[x]/(x2 + x + 1)Z[x] is a domain by a). Thus

(x2 + x + 1)Z[x] is a prime ideal which is non-zero, so x2 + x + 1 is a prime element.

c) Since x2+x+1 is a prime element, it is irreducible. Thus the ideal (x2+x+1)Z[x]

is maximal among proper principal ideals. Note that 2 6∈ (x2 + x + 1)Z[x], so M is

strictly bigger than (x2 + x + 1)Z[x]. If M were principal, it would not be a proper

ideal, i.e. it would equal Z[x]. But elements of M are of the form 2 ·p+(x2 +x+1)q

for some polynomials p, q ∈ Z[x]. It follows that the only constant polynomials in

M are even numbers, so M 6= Z[x]. This proves that M is not principal.

d) This is a starightforward consequence of the second isomorphism theorem. In

fact, note that M contains the kernel of f . Furthermore, f(M) = 2R. In fact

2a + 2bω = f(2 + 2x) and 2 + 2x = 2(1 + x) ∈ M , so every elementt of 2R

belongs to f(M). Conversely, if g ∈ M then g = 2 · p + (x2 + x + 1)q for some

polynomials p, q ∈ Z[x] so f(g) = f(2 · p + (x2 + x + 1)q) = 2f(p) ∈ 2R. Thus

in the correspondence theorem, the ideal M of Z[x] corresponds to the ideal 2R of

R. Therefore, by the second isomorphism theorem, the rings Z[x]/M and R/2R are

isomorphic. Recall now that 2 is irreducible in R and R is a PID, so 2R is maximal

(by the result from last quiz). Thus R/2R is a field and so is Z[x]/M . Thus M is

maximal. (Alternatively, recall that in the correrspondense theorem maximal ideals

correspond to maximal ideals).
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