
Solution to Problem 25: Division of x7 + x6 + x2 + x + 1 by x7 + x5 + x4 + x2 + 1

yields

x7 + x6 + x2 + x + 1 = (x7 + x5 + x4 + x2 + 1) + (x6 + x5 + x4 + x)

Division of x7 + x5 + x4 + x2 + 1 by x6 + x5 + x4 + x yields

x7 + x5 + x4 + x2 + 1 = (x + 1)(x6 + x5 + x4 + x) + (x5 + x + 1).

Division of x6 + x5 + x4 + x by x5 + x + 1 yields

x6 + x5 + x4 + x = (x + 1)(x5 + x + 1) + (x4 + x2 + x + 1).

Division of x5 + x + 1 by x4 + x2 + x + 1 yields

x5 + x + 1 = x(x4 + x2 + x + 1) + (x3 + x2 + 1).

Division of x4 + x2 + x + 1 by x3 + x2 + 1 yields

x4 + x2 + x + 1 = (x + 1)(x3 + x2 + 1).

Thus a greatest common divisor of f = x7+x6+x2+x+1 and g = x7+x5+x4+x2+1

is d(x) = x3 + x2 + 1. In order to express d as a combination of f and g we work

backwards (recall that −1 = 1 in the field F2):

d = x5+x+1−x(x4+x2+x+1) = x5+x+1+x[(x6+x5+x4+x)−(x+1)(x5+x+1)] =

= x(x6 + x5 + x4 + x) + (x2 + x + 1)(x5 + x + 1) =

= x(x6 +x5 +x4 +x)+(x2 +x+1)[x7 +x5 +x4 +x2 +1− (x+1)(x6 +x5 +x4 +x)] =

= (x3 + x + 1)(x6 + x5 + x4 + x) + (x2 + x + 1)(x7 + x5 + x4 + x2 + 1) =

= (x3+x+1)[(x7+x6+x2+x+1)−(x7+x5+x4+x2+1)]+(x2+x+1)(x7+x5+x4+x2+1) =

= (x3 + x + 1)(x7 + x6 + x2 + x + 1) + (x3 + x2)(x7 + x5 + x4 + x2 + 1).

Solution to Problem 26: i) Let us note first the following very useful observation:

Let F be a field. Any polynomial of degree 1 in F [x] is irreducible. A polynomial

of degree 2 or 3 is not irreducible in F [x] iff it has a root in F .
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In fact, if a polynomial f ∈ F [x] is not irreducible then it can be factored into

two non-invertible polynomials f = gh. Since polynomials of degree 0 (i.e. non-

zero constants) are invertible, both g and h have positive degree. In particular,

deg f = deg g + deg h ≥ 2, i.e. degree 1 polynomials are irreducible. Also, if degf is

2 or 3 then at least one of deg g, deg h must be 1. But any polynomial of degree 1

has a root in F , so f has a root in F . Conversely, if r is a root of f (and deg f > 1)

then f = (x − r)q(x) for some q of degree at least 1, so f is not irreducible.

In F3 we have 9 monic polynomials of of degree 2:

x2, x2 + 1, x2 + 2, x2 + x, x2 + x + 1, x2 + x + 2, x2 + 2x, x2 + 2x + 1, x2 + 2x + 2

Note that 0 is a root of the polynomials x2, x2 + x, x2 + 2x, 1 is a root of x2 + 2,

x2 +x+1 and 2 is a root of x2 +2x+1. Thus these polynomials are not irreducible.

None of 0, 1, 2 is a root of any of the remaining three polynomials, so they are

irreducible. Thus x2 + 1, x2 + x + 2, x2 + 2x + 2 are the only irreducible monic

polynomials of degree 2 in F3[x].

ii) Let f ∈ F3[x] be a polynomial of degree 4 or 5 which has no roots. Then f has

no divisors of degree 1. Thus every irreducible factor of f has degree at least 2.

Suppose that f is not irreducible. Then it has at least two irreducible factors. Since

the sum of the degrees of the factors is equal to deg f , we see that f has exactly

two factors and at least one of them is of degree 2. Since every non-zero polynomial

over a field is associated to a monic polynomial of the same degree, f has a monic

irreducible factor of degree 2.

Remark. Note that the observation in ii) holds for polynomials over any field.

iii) Consider the polynomial f = x5 − x + 1 ∈ F3[x]. Easy inspection shows that it

does not have any roots in F3. If f was reducible, it would have a monic irreducible

factor of degree 2 by ii). In i) we found all monic irreducible polynomials of degree

2 in F3[x]. A simple calculation using division algorithm shows that none of them

divides f . Thus f is irreducible. Since F3[x] is a PID, we know that every irreducible

element is prime and every non-zero prime ideal is maximal. Thus fF3[x] is a

maximal ideal and therefore F3[x]/fF3[x] is a field. Note now that if h ∈ F3[x] and

if r(x) is the remainder of h modulo f then h + fF3[x] = r + fF3[x]. This shows
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that every coset of fF3[x] can be represented by a polynomial of dgeree at most

4. Conversly, two different polynomials p, q of degree at most 4 represent the same

cosets iff f |p− q which is only possible when p = q. Thus the cosets of fF3[x] are in

bijective correspondence with polynomials of degree at most 4. The number of such

polynomials is 35 = 243. This proves that the field F3[x]/fF3[x] has 243 elements.

Since x+ fF3[x] is a non-zero element of F3[x]/fF3[x], it is invertible. We are asked

to find its inverse. Note that f = x(x4 − 1)+1, so 1 = (1−x4)x+ f . It follows that

1+fF3[x] = ((1−x4)x+f)+fF3[x] = (1−x4)x+fF3[x] = ((1−x4)+fF3[x])(x+fF3[x]).

This shows that the inverse of x + fF3[x] is (1 − x4) + fF3[x].

Solution to Problem 31: i) There are only 4 polynomials of degree 2 in F2[x]:

x2, x2 + 1, x2 + x, x2 + x + 1.

The first three polynomials have a root in F2 so they are not irreducible. The last

polynomials does not have any roots in F2 so it is irreducible (we use the general

observation discussed in the solutiuon to problem 26).

ii) There are eight polynomials of degree 3 in F2[x]:

x3, x3 + x, x3 + x2, x3 + x2 + x, x3 + 1, x3 + x2 + x + 1, x3 + x + 1, x3 + x2 + 1.

The first four polynomials have root 0, the next two have root 1 so none of them is

irreducible. Neither 0 nor 1 is a root of the last two polynomials, so they are the

only cubic irreducible polynomials in F2[x].

iii) Note that a reducible polynomial of degree 6 must have an irreducible factor of

dgeree at most 3. By i) and ii) we have five irreducible polynomials of degree at

most 3:

x, x + 1, x2 + x + 1, x3 + x + 1, x3 + x2 + 1.

Thus a polynomial of degree 6 which is not divisible by any of these 5 polynomials

is irreducible. It is now easy to check (using division algorithm) that none of these

five polynomials divides x6 + x5 + 1. Similarly, x6 + x + 1 is not divisible by any of

the five polynomials. Thus both x6 + x5 + 1 and x6 + x + 1 are irreducible.
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Remark. It can be proved that there are 9 irreducible polynomials of degree 6 in

F2[x]. There are 6 irreducible polynomials of degeree 5 and 3 irreducible polynomials

of degree 4.
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