Problem 1. Let R be an integral domain and let $a, b \in R$. An element $m \in R$ is called a **least common multiple** of a and b if

- 1. a|m and b|m
- 2. if $c \in R$ and a|c and b|c then m|c.

a) Prove that if m_1 and m_2 are least common multiples of a and b then m_1 and m_2 are associated (so, a least common multiple, if exists, is unique up to an invertible factor).

b) Let R be a UFD. We proved that gcd(a, b) exists for any $a, b \in R$. Let a, b be nonzero elements of R. Prove that a/gcd(a, b) and b/gcd(a, b) are relatively prime.

c) Suppose that R is a UFD. Let a, b be nonzero elements of R. Prove that ab/gcd(a, b) is a least common multiple of a and b. Thus least common multiples exist in any UFD.

Solution: a) Since m_1 is a least common multiple of a and b and both a, b divide m_2 , we have $m_1|m_2$. Switching the roles of m_1 and m_2 in the last argument, we get $m_2|m_1$. Thus m_1 and m_2 are associated.

b) Suppose that x is a divisor of $a / \gcd(a, b)$ and $b / \gcd(a, b)$. Then $x \gcd(a, b)$ divides both a and b, so $x \gcd(a, b) | \gcd(a, b)$. Canceling by $\gcd(a, b)$, we get that x | 1, i.e. x is invertible. We showed that any common divisor of $a / \gcd(a, b)$ and $b / \gcd(a, b)$ is invertible. This means that $a / \gcd(a, b)$ and $b / \gcd(a, b)$ are relatively prime.

Remark. Note that we only used the existence of gcd(a, b) in the above argument. In other words we proved that if gcd(a, b) exists for two non-zero elements a, b in an integral domain (we do not assume that it is UFD), then a/gcd(a, b) and b/gcd(a, b) are relatively prime.

c) Clearly $ab/\gcd(a,b) = a(b/\gcd(a,b)) = (a/\gcd(a,b))b$ is divisible both by a and by b. Suppose that a|m and b|m for some $m \in R$. It follows that $\gcd(a,b)|m$ and

$$\frac{a}{\gcd(a,b)} | \frac{m}{\gcd(a,b)}, \quad \frac{b}{\gcd(a,b)} | \frac{m}{\gcd(a,b)}.$$

We proved that in a UFD if two relatively prime elements x, y divide a third element z then also xy|z. Since $a/\gcd(a,b)$ and $b/\gcd(a,b)$ are relatively prime by b), we

conclude that

$$\frac{a}{\gcd(a,b)}\frac{b}{\gcd(a,b)}|\frac{m}{\gcd(a,b)}$$

Multiplying by gcd(a, b) we see that ab/gcd(a, b) divides m. This proves that ab/gcd(a, b) is a least common multiple of a and b.

Problem 2. Let R be an integral domain.

a) Let $f, g \in R[x]$ be such that $fg = cx^n$ for some n and some $c \in R$, $c \neq 0$. Prove that there exist elements $a, b \in R$ and $m \leq n$ such that $f = ax^m$ and $g = bx^{n-m}$ and ab = c.

b) Suppose that $f = f_0 + f_1x + ... + f_nx^n \in R[x]$. Suppose that there is a prime ideal P of R such that $f_n \notin P$, $f_0, ..., f_{n-1} \in P$ and $f_0 \notin P^2$. Prove that if f = ghfor some $g, h \in R[x]$ then one of g, h is constant. Conclude that if in addition f is monic then it is irreducible in R[x]. This result is known as **Eisenstein criterion**. Hint: Assume that f = gh and both g, h have positive degree. Pass to the ring (R/P)[x] and apply a) to show that constant terms of g and h belong to P. Derive contradiction.

c) Prove that the polynomial $2x^{10} + 21x^8 - 35x^2 + 14$ is irreducible in $\mathbb{Z}[x]$. Hint: Apply Eisenstein criterion with appropriate prime ideal P.

Solution: a) Let $m = \deg f$ and let a, b be the leading coefficients of f, g respectively. Since $fg = cx^n$, comparing leading coefficients and degrees of both sides yields ab = c and $n - m = \deg g$. Suppose that smallest power of x which occurs in f with non-zero coefficient is x^k and the smallset power of x occuring in g with non-zero coefficient is l. Then $k \leq m$, $l \leq n - m$ and $x^k \cdot x^l = x^{k+l}$ occurs in fg with non-zero coefficient. Thus k + l = n = m + (n - m). It follows that m = k and n - m = l are also the largest powers of x occuring in f, g respectively. In other words, $f = ax^m$, $g = bx^{n-m}$.

b) Suppose that f = gh and $\deg g = m > 0$, $\deg h = k > 0$. Thus k + m = n. The canonical homomorphism $\phi : R \longrightarrow R/P$ induces a homomorphism $\phi : R[x] \longrightarrow (R/P)[x]$ defined by $\phi(a_0 + a_1x + ... + a_sx^s) = \phi(a_0) + \phi(a_1)x + ... + \phi(a_s)x^s$. Since $f_0, ..., f_{n-1}$ belong to P, they are maped to 0 in R/P, so $\phi(f) = \phi(f_n)x^n$ and $\phi(f_n) \neq 0$ (since $f_n \notin P$). On the other hand, $\phi(f) = \phi(gh) = \phi(g)\phi(h)$. We

see that $\phi(f_n)x^n = \phi(g)\phi(h)$ in (R/P)[x]. Write $g = g_0 + g_1x + \ldots + g_mx^m$ and $h = h_0 + h_1x + \ldots + h_kx^k$. Then $\phi(g) = \phi(g_0) + \phi(g_1)x + \ldots + \phi(g_m)x^m$ and $\phi(h) = \phi(h_0) + \phi(h_1)x + \ldots + \phi(h_k)x^k$. Comparing degrees in the equality $\phi(f_n)x^n = \phi(g)\phi(h)$ we see that $\phi(g_m) \neq 0$ and $\phi(h_k) \neq 0$. Since P is a prime ideal, the ring R/P is an integral domain so we may apply a) to the ring (R/P)[x]. It follows that $\phi(g) = \phi(g_m)x^m$ and $\phi(h) = \phi(h_k)x^k$. Consequently, since both m, k are positive, we must have $\phi(g_0) = 0 = \phi(h_0)$. This means that $g_0 \in P$ and $h_0 \in P$. This however implies that $f_0 = g_0h_0 \in P^2$, a contradiction. This proves that either g or h must be a constant. If in addition f is monic, then this constant is invertible (compare the leading coefficients) so we see that whenever f = gh one of g, h is invertible. This proves that f is irreducible in R[x].

For those still alergic to factor rings here is another, more direct argument. Let s be smallest such that $g_s \notin P$ and let t be smallest such that $h_t \notin P$. Since f = gh we have in particular

$$f_{s+t} = g_s g_t + \sum_{i < s} g_i h_{s+t-i} + \sum_{j < t} g_{s+t-j} h_j.$$

Note that each summand in $\sum_{i < s} g_i h_{s+t-i}$ belongs to P since P is an ideal and $g_i \in P$ for i < s. Likewise each summand of $\sum_{j < t} g_{s+t-j}h_j$ belongs to P. Thus the sum $\sum_{i < s} g_i h_{s+t-i} + \sum_{j < t} g_{s+t-j}h_j$ belongs to P. Since P is a prime ideal and neither g_s nor g_t belong to P also $g_s g_t \notin P$. Thus

$$f_{s+t} = g_s g_t + \sum_{i < s} g_i h_{s+t-i} + \sum_{j < t} g_{s+t-j} h_j \notin P.$$

This is only possible if s + t = n. Thus s = m and t = n - m. In particular, both g_0 and h_0 belong to P. From now on the argument continues as in the first solution.

c) Let $f(x) = 2x^{10} + 21x^8 - 35x^2 + 14$ and let $P = 7\mathbb{Z}$. This is a prime ideal of \mathbb{Z} . Clearly $2 \notin P$, 21, -35, 14 all belong to P and $14 \notin P^2$. Suppose that f = gh for some $g, h \in \mathbb{Z}[x]$. By Eisenstein criterion, either g or h is constant. Without loss of generality we may assume that g = a is a constant. Then all coefficients of f are divisible by a. The only integers which divide all coefficients of f are 1 and -1, so $a = \pm 1$ is invertible. This proves that f is irreducible in $\mathbb{Z}[x]$.