
Problem 1. Let R be an integral domain and let a, b ∈ R. An element m ∈ R is

called a least common multiple of a and b if

1. a|m and b|m

2. if c ∈ R and a|c and b|c then m|c.

a) Prove that if m1 and m2 are least common multiples of a and b then m1 and m2

are associated (so, a least common multiple, if exists, is unique up to an invertible

factor).

b) Let R be a UFD. We proved that gcd(a, b) exists for any a, b ∈ R. Let a, b be

nonzero elements of R. Prove that a/ gcd(a, b) and b/ gcd(a, b) are relatively prime.

c) Suppose that R is a UFD. Let a, b be nonzero elements of R. Prove that

ab/ gcd(a, b) is a least common multiple of a and b. Thus least common multiples

exist in any UFD.

Solution: a) Since m1 is a least common multiple of a and b and both a, b divide

m2, we have m1|m2. Switching the roles of m1 and m2 in the last argument, we get

m2|m1. Thus m1 and m2 are associated.

b) Suppose that x is a divisor of a/ gcd(a, b) and b/ gcd(a, b). Then x gcd(a, b) divides

both a and b, so x gcd(a, b)| gcd(a, b). Canceling by gcd(a, b), we get that x|1, i.e. x

is invertible. We showed that any common divisor of a/ gcd(a, b) and b/ gcd(a, b) is

invertible. This means that a/ gcd(a, b) and b/ gcd(a, b) are relatively prime.

Remark. Note that we only used the existence of gcd(a, b) in the above argument.

In other words we proved that if gcd(a, b) exists for two non-zero elements a, b in an

integral domain (we do not assume that it is UFD), then a/ gcd(a, b) and b/ gcd(a, b)

are relatively prime.

c) Clearly ab/ gcd(a, b) = a(b/ gcd(a, b)) = (a/ gcd(a, b))b is divisible both by a and

by b. Suppose that a|m and b|m for some m ∈ R. It follows that gcd(a, b)|m and

a

gcd(a, b)
|

m

gcd(a, b)
,

b

gcd(a, b)
|

m

gcd(a, b)
.

We proved that in a UFD if two relatively prime elements x, y divide a third element

z then also xy|z. Since a/ gcd(a, b) and b/ gcd(a, b) are relatively prime by b), we
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conclude that
a

gcd(a, b)

b

gcd(a, b)
|

m

gcd(a, b)
.

Multiplying by gcd(a, b) we see that ab/ gcd(a, b) divides m. This proves that

ab/ gcd(a, b) is a least common multiple of a and b.

Problem 2. Let R be an integral domain.

a) Let f, g ∈ R[x] be such that fg = cxn for some n and some c ∈ R, c 6= 0. Prove

that there exist elements a, b ∈ R and m ≤ n such that f = axm and g = bxn−m

and ab = c.

b) Suppose that f = f0 + f1x + ... + fnxn ∈ R[x]. Suppose that there is a prime

ideal P of R such that fn 6∈ P , f0, ..., fn−1 ∈ P and f0 6∈ P 2. Prove that if f = gh

for some g, h ∈ R[x] then one of g, h is constant. Conclude that if in addition f is

monic then it is irreducible in R[x]. This result is known as Eisenstein criterion.

Hint: Assume that f = gh and both g, h have positive degree. Pass to the ring

(R/P )[x] and apply a) to show that constant terms of g and h belong to P . Derive

contradiction.

c) Prove that the polynomial 2x10 + 21x8 − 35x2 + 14 is irreducible in Z[x]. Hint:

Apply Eisenstein criterion with appropriate prime ideal P .

Solution: a) Let m = deg f and let a, b be the leading coefficients of f , g

respectively. Since fg = cxn, comparing leading coefficients and degrees of both

sides yields ab = c and n − m = deg g. Suppose that smallest power of x which

occurs in f with non-zero coefficient is xk and the smallset power of x occuring in g

with non-zero coefficient is l. Then k ≤ m, l ≤ n − m and xk · xl = xk+l occurs in

fg with non-zero coefficient. Thus k + l = n = m + (n − m). It follows that m = k

and n−m = l are also the largest powers of x occuring in f , g respectively. In other

words, f = axm, g = bxn−m.

b) Suppose that f = gh and deg g = m > 0, deg h = k > 0. Thus k + m = n. The

canonical homomorphism φ : R −→ R/P induces a homomorphism φ : R[x] −→

(R/P )[x] defined by φ(a0 + a1x + ... + asx
s) = φ(a0) + φ(a1)x + ... + φ(as)x

s. Since

f0, ..., fn−1 belong to P , they are maped to 0 in R/P , so φ(f) = φ(fn)xn and

φ(fn) 6= 0 (since fn 6∈ P ). On the other hand, φ(f) = φ(gh) = φ(g)φ(h). We
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see that φ(fn)xn = φ(g)φ(h) in (R/P )[x]. Write g = g0 + g1x + ... + gmxm and

h = h0 + h1x + ... + hkx
k. Then φ(g) = φ(g0) + φ(g1)x + ... + φ(gm)xm and φ(h) =

φ(h0)+φ(h1)x+...+φ(hk)x
k. Comparing degrees in the equality φ(fn)xn = φ(g)φ(h)

we see that φ(gm) 6= 0 and φ(hk) 6= 0. Since P is a prime ideal, the ring R/P

is an integral domain so we may apply a) to the ring (R/P )[x]. It follows that

φ(g) = φ(gm)xm and φ(h) = φ(hk)x
k. Consequently, since both m, k are positive,

we must have φ(g0) = 0 = φ(h0). This means that g0 ∈ P and h0 ∈ P . This however

implies that f0 = g0h0 ∈ P 2, a contradiction. This proves that either g or h must be

a constant. If in addition f is monic, then this constant is invertible (compare the

leading coefficients) so we see that whenever f = gh one of g, h is invertible. This

proves that f is irreducible in R[x].

For those still alergic to factor rings here is another, more direct argument. Let s

be smallest such that gs 6∈ P and let t be smallest such that ht 6∈ P . Since f = gh

we have in particular

fs+t = gsgt +
∑

i<s

gihs+t−i +
∑

j<t

gs+t−jhj.

Note that each summand in
∑

i<s gihs+t−i belongs to P since P is an ideal and

gi ∈ P for i < s. Likewise each summand of
∑

j<t gs+t−jhj belongs to P . Thus

the sum
∑

i<s gihs+t−i +
∑

j<t gs+t−jhj belongs to P . Since P is a prime ideal and

neither gs nor gt belong to P also gsgt 6∈ P . Thus

fs+t = gsgt +
∑

i<s

gihs+t−i +
∑

j<t

gs+t−jhj 6∈ P.

This is only possible if s+ t = n. Thus s = m and t = n−m. In particular, both g0

and h0 belong to P . From now on the argument continues as in the first solution.

c) Let f(x) = 2x10 + 21x8 − 35x2 + 14 and let P = 7Z. This is a prime ideal of Z.

Clearly 2 6∈ P , 21,−35, 14 all belong to P and 14 6∈ P 2. Suppose that f = gh for

some g, h ∈ Z[x]. By Eisenstein criterion, either g or h is constant. Without loss of

generality we may assume that g = a is a constant. Then all coefficients of f are

divisible by a. The only integers which divide all coefficients of f are 1 and −1, so

a = ±1 is invertible. This proves that f is irreducible in Z[x].
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