Solution to Problem 6: Let $a = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + ... + a_n \cdot 10^n$.

Since $10^k \equiv 0 \pmod{2}$ for k > 0 we see that

$$a \equiv a_0 \pmod{2}$$
.

Thus 2|a iff $2|a_0$.

Similarly, $10^k \equiv 0 \pmod{5}$ for k > 0 so

$$a \equiv a_0 \pmod{5}$$
.

Thus 5|a iff $a_0 = 0$ or $a_0 = 5$ (recall that the numbers a_i are the digits of a, i.e. they all are in the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$).

Now $10 \equiv 2 \pmod{4}$ and $10^k \equiv 0 \pmod{4}$ for $k \ge 2$ so

$$a \equiv a_0 + a_1 \cdot 10 \equiv a_0 + 2a_1 \pmod{4}$$
.

It follows that 4|a| iff $4|a_0 + 2a_1$.

Similarly, we have $10\equiv 2 \pmod{8}$, $10^2\equiv 4 \pmod{8}$ and $10^k\equiv 0 \pmod{8}$ for $k\geq 3.$ Thus

$$a \equiv a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 \equiv a_0 + 2a_1 + 4a_2 \pmod{8}$$
.

In particular, 8|a iff $8|a_0 + 2a_1 + 4a_2$.

Note now that $10 \equiv 1 \pmod{3}$ and $10 \equiv 1 \pmod{9}$. Thus $10^k \equiv 1 \pmod{3}$ and $10^k \equiv 1 \pmod{9}$ for every $k \ge 0$. It follows that

$$a \equiv a_1 + a_1 + \dots + a_n \pmod{3}$$

and

$$a \equiv a_1 + a_1 + \dots + a_n \pmod{9} \ .$$

In particular, 3|a iff $3|a_1 + a_1 + ... + a_n$ and 9|a iff $9|a_1 + a_1 + ... + a_n$.

Since $10 \equiv -1 \pmod{11}$, we have $10^k \equiv 1 \pmod{11}$ for k even and $10^k \equiv -1 \pmod{11}$ for k odd. Consequently,

$$a \equiv a_0 - a_1 + a_2 - a_3 + \dots \pmod{11}$$
.

Thus 11|a iff $11|a_0 - a_1 + a_2 - a_3 + \dots$

Solution to Problem 12: We perform Euclidean algorithm to 89 and 55:

$$89 = 55 + 34,$$

$$55 = 34 + 21,$$

$$34 = 21 + 13,$$

$$21 = 13 + 8,$$

$$13 = 8 + 5,$$

$$8 = 5 + 3,$$

$$5 = 3 + 2,$$

$$3 = 2 + 1,$$

$$2 = 2 \cdot 1 + 0.$$

Thus

$$1 = 3-2 = 3-(5-3) = 2 \cdot 3 - 5 = 2(8-5) - 5 = 2 \cdot 8 - 3 \cdot 5 = 2 \cdot 8 - 3 \cdot (13-8) = 5 \cdot 8 - 3 \cdot 13 = 5 \cdot (21-13) - 3 \cdot 13 = 5 \cdot 21 - 8 \cdot 13 = 5 \cdot 21 - 8 \cdot (34-21) = 13 \cdot 21 - 8 \cdot 34 = 13 \cdot (55-34) - 8 \cdot 34 = 13 \cdot 55 - 21 \cdot 34 = 13 \cdot 55 - 21 \cdot (89-55) = 34 \cdot 55 - 21 \cdot 89.$$

Thus $\lambda = -21$, $\mu = 34$ work. From $1 = 34 \cdot 55 - 21 \cdot 89$ we see that

$$89 \cdot (-21) \equiv 1 \pmod{55} \ .$$

Mulpplying this congruence by 7 we get

$$89 \cdot (-21) \cdot 7 \equiv 7 \pmod{55} \ .$$

To simply fy, note that $(-21)\cdot 7 = -147 \equiv 18 \pmod{55}$, so

$$89 \cdot 18 \equiv 7 \pmod{55} \ .$$

All solutions are given by $x = 18 + k \cdot 55, k \in \mathbb{Z}$.