Solution to Problem 6: Let a = ag + a; - 10 + as - 10> + ... + a,, - 10™.
Since 10*¥ = 0 (mod 2) for k > 0 we see that

a = ag (mod 2) .

Thus 2|a iff 2|ay.
Similarly, 10* = 0 (mod 5) for k > 0 so

a = ag (mod 5) .

Thus 5|a iff ag = 0 or ag = 5 (recall that the numbers a; are the digits of a, i.e. they
all are in the set {0,1,2,3,4,5,6,7,8,9}).
Now 10 = 2 (mod 4) and 10* =0 (mod 4) for k > 2 so

a=ag+a-10 = ag + 2a; (mod 4) .

It follows that 4|a iff 4]|ag + 2a,.
Similarly, we have 10 = 2 (mod 8) , 10> = 4 (mod 8) and 10* = 0 (mod 8) for
k > 3. Thus

a=ag+a-10+ay-10? = ag + 2a; + 4ay (mod 8) .

In particular, 8|a iff 8|ag + 2a; + 4as.
Note now that 10 = 1 (mod 3) and 10 = 1 (mod 9) . Thus 10¥ = 1 (mod 3)
and 10 = 1 (mod 9) for every k > 0. It follows that

a=a;+a+ ...+ a, (mod 3)

and

a=a+a;+...+a, (mod9) .

In particular, 3|a iff 3|a; + a3 + ... + a, and 9la iff 9]a; + a1 + ... + a,.
Since 10 = —1 (mod 11) , we have 10¥ = 1 (mod 11) for k even and 10* =
—1 (mod 11) for k odd. Consequently,

a=ay—a; +ay—az+.. (mod 11) .

Thus 11|a iff 11]ag — a1 + as — ag + ....



Solution to Problem 12: We perform Euclidean algorithm to 89 and 55:

89 = 55 + 34,
55 = 34 + 21,
34 =21 + 13,
21 =13 +8,
13 =8+ 5,
8=5+3,
5=3+2,
3=2+1,
2=2-1+0.

Thus
1=3-2=3-(5—-3) =2-3—-5=2(8-5)—5 =2-8—3-5 = 2:8—3:(13—8) = 5:8—3-13 =

=5-(21-13)—3-13=5-21—-8-13=5-21—-8-(34—-21)=13-21—-8-34 =
13- (55 —34) —8-34=13-55—21-34=13-55—21- (89 —55) =34 -55—21-89.

Thus A = =21, p = 34 work. From 1 = 3455 — 21 - 89 we see that
89-(—21) =1 (mod 55) .
Mulyplying this congruence by 7 we get
89-(—21)-7=7 (mod 55) .
To simplyfy, note that (—21) - 7= —147 = 18 (mod 55) , so
8918 =7 (mod 55) .

All solutions are given by x = 18 + k- 55, k € Z.



