Problem 1. Let R be a UFD. For a non-zero polynomial $f \in R[x]$ define the content $\operatorname{cont}(f)$ of f as a greatest common divisor of the coefficients of f (note: this is only defined up to invertible element of R; in other words, the content is not a unique element of R but a class of associated elements). Prove that $\operatorname{cont}(fg) = \operatorname{cont}(f)\operatorname{cont}(g)$. Hint: Use Gauss Lemma.

Solution: Note that by the very definition of $\operatorname{cont}(f)$, we have $f = \operatorname{cont}(f)F$ for some primitive polynomial F. Similarly $g = \operatorname{cont}(g)G$ with G primitive. It follows that $fg = \operatorname{cont}(f)\operatorname{cont}(g)FG$. By Gauss' Lemma, FG is primitive and therefore $\operatorname{cont}(fg) = \operatorname{cont}(f)\operatorname{cont}(g)$.

Problem 2. Let R be a UFD with a field of fractions K. Suppose that $f \in R[x]$ is monic. Prove that if $g \in K[x]$ is monic and g|f in K[x] then $g \in R[x]$.

Solution: Suppose that f = gh for some $h \in K[x]$. There is $k \in K$ such that $kg \in R[x]$ is primitive. Thus $f = (kg)(k^{-1}h)$ in K[x]. By one of our results (Theorem 2), we conclude that $k^{-1}h \in R[x]$. So $f = (kg)(k^{-1}h)$ is a factorization in R[x]. Since f is monic, the leading coefficients of kg and $k^{-1}h$ are invertible in R. But the leading coefficient of kg is k (since g is monic), so $k \in R$ is invertible in R. Since $kg \in R[x]$, also $k^{-1}(kg) = g \in R[x]$.

Problem 3. Let $K \subseteq L$ be fields. Suppose that $f, g \in K[x]$ and f|g in the ring L[x]. Prove that f|g in the ring K[x].

Solution: The division algorithm in K[x] allows us to write g = hf + r for some $h, r \in K[x]$ with deg $r < \deg f$. This remains a true equality in the larger ring L[x]. But since f|g in L[x], we conclude that f|(g - hf) = r in L[x]. Since deg $r < \deg f$, this is only possible if r = 0. Thus f|g in K[x].