Homework due on Monday, November 12

Read section 2.2 in Lauritzen's book and section 3.2.1 in Cameron's book. Solve the following problems.

Problem 1. Let G be a group and let H, K be two subgroups of G such that $H \cup K$ is also a subgroup. Prove that either $H \subseteq K$ or $K \subseteq H$.

Problem 2. Let G be a group. Define the **center** of G as the subset Z(G) of all elements which commute with every element of G, i.e.

$$Z(G) = \{ g \in G : ag = ga \text{ for every } a \in G \}.$$

- a) Prove that Z(G) is a subgroup of G.
- b) Find $Z(D_6)$, $Z(D_8)$, $Z(Q_8)$ and $Z(D_{\infty})$.
- c) What is $Z(D_{2n})$?

Problem 3. Let G be a group and let H, K be subgroups of G.

a) Show that $H \cap K$ is a subgroup of G.

b) Suppose that $h_1, h_2 \in H$. Prove that $h_1(H \cap K) = h_2(H \cap K)$ iff $h_1K = h_2K$. Conclude that $[H: H \cap K] \leq [G: K]$.

c) Let L be a subgroup of H. Prove that [G:L] is finite iff both [G:H] and [H:L] are finite and then [G:L] = [G:H][H:L]. Hint: Show that if $aH \neq bH$ then $aL \neq bL$ and that H/L is a subset of G/L.

d) Suppose that [G:H] and [G:K] are finite. Prove that $[G:H \cap K] \leq [G:H][G:K]$ (so, in particular, $[G:H \cap K]$ is finite).