
Problem 1. Let G be a finite group of order mn, where gcd(m,n) = 1. Suppose

that Q is a subgroup of G of order m. Let N be a normal subgroup of G.

a) Show that if H is a subgroup of G then |H| can be written uniquely as αβ, where

α|m and β|n.

In particular, |N | = st with s|m and t|n and |QN | = uv with u|m and v|n.

b) Prove that mt||QN |. Conclude that m = u and t|v.

c) Prove that |QN/N | divides m. Conclude that t = v. Hint: Use the third

isomorphism theorem.

d) Prove that |QN/N | = m/s. Conclude that |N ∩ Q| = s.

Remark. Note that in the notation above we have n = [G : Q] (Lagrange’s Theo-

rem). Thus our assumption is that gcd(|Q|, [G : Q]) = 1. Any subgroup Q which

satisfies this condition is called a Hall subgroup of G. So the can summarise the

result of this problem as follows: if Q is a hall subgroup of G and N is a normal

subgroup then Q ∩ N is a Hall subgroup of N .

Solution: a) By Lagrange’s Theorem, |H|||G| = mn. Take α = gcd(|H|,m),

β = gcd(|H|, n). Then α||H|, β||H|, gcd(α, β) = 1. It follows that αβ||H|. Now

gcd(m/α, |H|/α) = 1 and gcd(n/β, |H|/β) = 1, so both m/α and n/β are relatively

prime to |H|/αβ and therefore gcd(mn/αβ, |H|/αβ) = 1. On the other hand,

|H|/αβ divides mn/αβ. This can happen only if |H|/αβ = 1, which shows that

|H| = αβ.

To show uniqueness, suppose that α1, β1 is another possibility. Then α1|m and

α1||H| so α1| gcd(|H|,m) = α. Likewise, β1|β. But αβ = |H| = α1β1 so α = α1 and

β = β1.

Remark. A shorter and simpler argument uses unique factorization of integers. |H|

is a product of prime powers and each of them divides either m or n but not both

(since gcd(m,n) = 1). Now α is the product of all those prime powers in |H| which

divide m and β is the product of the remaining prime powers in |H| (i.e. those

which divide n).
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b) Since Q is a subgroup of QN , we have m||QN |. Similarly, N is a subgroup

of QN so st||QN | and therefore t||QN |. Since gcd(m, t) = 1, we conclude that

mt||QN | = uv. In particular, m|uv. Note that gcd(m, v) = 1, so m|u. Recall now

that u|m, so u = m. Similarly, t|uv and gcd(u, t) = 1, so t|v.

c) By the Third Isomorphism Theorem, the groups QN/N and Q/(Q ∩ N) are

isomorphic, hence have the same order. But the order of Q/(Q ∩ N) divides the

order of Q by Lagrange’s Theorem, so we see that |QN/N ||m.

d) By Lagrange’s Theorem, |QN/N | = uv/st = (u/s)(v/t) = (m/s)(v/t). Note that,

by c), the order of |QN/N | divides m. On the other hand, the factor v/t of |QN/N |

is prime to m, so it must be 1. Thus |QN/N | = m/s. Now recall that QN/N and

Q/(Q ∩ N) are isomorphic, so m/s = |Q/(Q ∩ N)| = |Q|/|Q ∩ N | = m/|Q ∩ N |. It

follows that s = |Q ∩ N |.

Problem 2. Let G and H be groups. On the set G×H define a multiplication by

(g, h)(a, b) = (ga, hb).

a) Prove that G × H with above defined multiplication is a group. It is called the

product of G and H.

b) Prove that the maps πG : G × H −→ G and πH : G × H −→ H defined by

πG(g, h) = g and πH(g, h) = h are homomorphisms. What are the kernels of these

maps?

c) Suppose that G = H and let ∆ = {(a, b) ∈ G × G : a = b}. Prove that ∆ is

a subgroup of G × G which is isomorphic to G. Prove that ∆ is normal iff G is

abelian. If G is abelian, show that G × G/∆ is isomorphic to G.

d) Let f1 : Q −→ G and f2 : Q −→ H be homomorphisms. Define f : Q −→ G×H

by f(a) = (f1(a), f2(a)). Prove that f is a homomorphism and that ker f = ker f1 ∩

ker f2. Conclude that if A, B are normal subgroups of a group G then G/(A ∩ B)

is isomorphic to a subgroup of (G/A) × (G/B).

Solution: a) We need to check the axioms. For associativity,

[(a, b)(m,n)](g, h) = (am, bn)(g, h) = ((am)g, (bn)h) = (a(mg), b(nh)) =

= (a, b)(mg, nh) = (a, b)[(m,n)(g, h)].
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The identity of G × H is (e, e):

(g, h)(e, e) = (ge, he) = (g, h) = (eg, eh) = (e, e)(g, h).

Finally, the inverse of (g, h) is (g−1, h−1):

(g, h)(g−1, h−1) = (gg−1, hh−1) = (e, e).

b) We have

πG((g, h)(a, b)) = πG(ga, hb) = ga = πG(g, h)πG(a, b).

This shows that πG is a homomorphism and same argument works for πH . The

kernel of πG is the set of all pairs (g, h) such that g = e, so it is {e} × H (which is

naturally isomorphic to H). Similarly, the kernel of πH is G × {e}.

c) Consider the map f : G −→ G × G defined by f(g) = (g, g). Clearly ∆ is the

image of f . Note now that f is a homomorphism:

f(gh) = (gh, gh) = (g, g)(h, h) = f(g)f(h).

Since the image of a homomorphism is a subgroup, ∆ is a subgroup. (Alternatively,

you can just check directly that ∆ is a subgroup). Since the kernel of f is trivial,

we see that f gives an isomorphism between G and ∆.

Suppose that G is not abelian. Thus there are two elements g, h in G such

that gh 6= hg, i.e. hgh−1 6= g. Note that (g, g) ∈ ∆ and (h, e) ∈ G × G but

(h, e)(g, g)(h, e)−1 = (hgh−1, g) 6∈ ∆. Thus ∆ is not normal in G × G. Conversely,

if G is abelian then so is G × G, hence every subgroup of G × G is normal. In

particular ∆ � G × G.

Suppose now that G is abelian. Consider the map φ : G × G −→ G defined by

φ(g, h) = gh−1. Note that φ is a homomorphism:

φ((g, h)(a, b)) = φ(ga, hb) = (ga)(hb)−1 = gab−1h−1 = gh−1ab−1 = φ(g, h)φ(a, b).

Since g = φ(g, e) for any g ∈ G, we see that φ is surjective. The kernel of φ consists

of elements (g, h) such that gh−1 = e, i.e. g = h. Thus ker φ = ∆. By the First

Isomorphism Theorem, G × G/∆ and G are isomorphic.
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d) We have

f(ab) = (f1(ab), f2(ab)) = (f1(a)f1(b), f2(a)f2(b)) = (f1(a), f2(a))(f1(b), f2(b)) = f(a)f(b)

so f is a homomorphism. Note that f(a) = e iff f1(a) = e and f2(a) = e. This

means that ker f = ker f1 ∩ ker f2.

Let now f1 : G −→ G/A and f2 : G −→ G/B be the canonical homomorphisms.

Then f is a homomorphism from G to (G/A)×(G/B) whose kernel is ker f1∩ker f2 =

A ∩B. By the First Isomorphism Theorem, the image of f (which is a subgroup of

(G/A) × (G/B)) is isomorphic to G/(A ∩ B).

Problem 3. Consider the dihedral group D2n = {I, T, ..., T n−1, S, ST, ..., ST n−1} of

order 2n. Let f : D2n −→ A be a homomorphism, where A is an abelian group.

a) Prove that T 2 ∈ ker f .

b) Prove that if n is odd then the image of f has either one or two elements. Give

example of a homomorphism f whith image of order 2.

c) Let n be even. Define a map g : D2n −→ Z/2Z × Z/2Z by

g(SaT b) = (a + 2Z, b + 2Z).

Prove that g is a surjective homomorphism and find its kernel.

d) Prove that if n is even then the image of f is isomorphic to Z/2Z×Z/2Z or Z/2

or the trivial group.

Solution: a) Recall that TS = ST−1. Since f is a homomorphism and A is

abelian, we have f(TS) = f(T )f(S) = f(S)f(T ) and f(ST−1) = f(S)f(T )−1.

Thus f(S)f(T ) = f(S)f(T )−1 and f(T ) = f(T )−1. This means that f(T )2 = e, i.e.

f(T 2) = e. Thus T 2 ∈ ker f .

b) Suppose that n = 2k−1 is odd. Then T = TT 2k−1 = T 2k = (T 2)k ∈ ker f . Thus,

ker f contains the subgroup < T >= {I, T, T 2, ..., T n−1} which has index 2 in D2n.

It follows that either ker f =< T > or ker f = D2n. In the former case, the image of

f has 2 elements and in the latter case it has one element (by the first isomorphism

theorem).
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To get an example note that < T > is a normal subgroup of D2n of index 2.

Thus the canonical homomorphism D2n −→ D2n/ < T > has image of order 2.

c) Note that g is well defined, since if b1 ≡ b2 (mod n) then b1 ≡ b2 (mod 2) (for n

odd, this is would not be true). Recall that (SaT b)(SmT k) = Sa+mT k+(−1)mb. Since

k + (−1)mb ≡ k + b (mod 2) we see that

g((SaT b)(SmT n)) = ((a+m)+2Z, (k+(−1)mb)+2Z) = ((a+m)+2Z, (k+b)+2Z) =

= (a + 2Z, b + 2Z) + (m + 2Z, k + 2Z) = g(SaT b)g(SmT k).

This shows that g is a homomorphism. The kernel of g consists of SaT b such that

a and b are even, so ker g =< T 2 >. Now g(S) = (1 + 2Z, 0 + 2Z), g(T ) =

(0 + 2Z, 1 + 2Z), g(ST ) = (1 + 2Z, 1 + 2Z), so g is surjective.

d) By a), we have < T 2 >⊆ ker f . By c), D2n/ < T 2 > is isomorphic to Z/2Z ×

Z/2Z. The image of f is isomorphic to D2n/ ker f . Let M be the subgroup of

Z/2Z × Z/2Z which corresponds to ker f in the Correspondence Theorem. By the

second isomorphism theorem, D2n/ ker f is isomorphic to (Z/2Z × Z/2Z)/M . If M

is trivial, then we see that the image of f is isomorphic to Z/2Z×Z/2Z. If |M | = 2

then (Z/2Z × Z/2Z)/M has 2 elements, hence it is isomorphic to Z/2Z. Finally, if

|M | = 4 then the image of f is trivial.
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