Problem 1. Let G be a finite group of order mn, where gcd(m,n) = 1. Suppose
that @) is a subgroup of G of order m. Let N be a normal subgroup of G.

a) Show that if H is a subgroup of G then |H| can be written uniquely as a3, where

alm and G|n.
In particular, | N| = st with s|m and t|n and |QN| = uv with u|m and v|n.
b) Prove that mt||QN|. Conclude that m = u and t|v.

c) Prove that |QN/N| divides m. Conclude that ¢ = v. Hint: Use the third

isomorphism theorem.
d) Prove that |QN/N| = m/s. Conclude that [N N Q| = s.

Remark. Note that in the notation above we have n = [G : Q] (Lagrange’s Theo-
rem). Thus our assumption is that ged(|Q|,[G : Q]) = 1. Any subgroup ) which
satisfies this condition is called a Hall subgroup of G. So the can summarise the
result of this problem as follows: if @) is a hall subgroup of G and N is a normal

subgroup then () N N is a Hall subgroup of N.

Solution: a) By Lagrange’s Theorem, |H|||G| = mn. Take a = gcd(|H|,m),
B = ged(|H|,n). Then «f|H|, B||H|, ged(a, B) = 1. Tt follows that af||H|. Now
ged(m/a, |H|/a) = 1 and ged(n/B, |H|/B) = 1, so both m/a and n/ are relatively
prime to |H|/af and therefore ged(mn/ag,|H|/afB) = 1. On the other hand,
|H|/af divides mn/af. This can happen only if |H|/af = 1, which shows that
|H| = af.

To show uniqueness, suppose that «aq, 3; is another possibility. Then «;|m and
ap||H| so aq] ged(|H|,m) = «. Likewise, 3;1|5. But a8 = |H| = a1; so o = a3 and
G = pr

Remark. A shorter and simpler argument uses unique factorization of integers. |H |
is a product of prime powers and each of them divides either m or n but not both
(since ged(m,n) = 1). Now « is the product of all those prime powers in |H| which
divide m and f is the product of the remaining prime powers in |H| (i.e. those
which divide n).



b) Since @ is a subgroup of QN, we have m||QN|. Similarly, N is a subgroup
of QN so st||QN| and therefore t||QN|. Since ged(m,t) = 1, we conclude that
mt||QN| = uv. In particular, m|uv. Note that ged(m,v) = 1, so m|u. Recall now

that u|m, so u = m. Similarly, t|uv and ged(u,t) = 1, so t|v.

c) By the Third Isomorphism Theorem, the groups QN/N and Q/(Q N N) are
isomorphic, hence have the same order. But the order of @/(Q N N) divides the
order of ) by Lagrange’s Theorem, so we see that |QN/N||m.

d) By Lagrange’s Theorem, |QN/N| = uv/st = (u/s)(v/t) = (m/s)(v/t). Note that,
by ¢), the order of |QN/N| divides m. On the other hand, the factor v/t of |QN/N|
is prime to m, so it must be 1. Thus |QN/N| = m/s. Now recall that QN/N and

Q/(Q N N) are isomorphic, so m/s = |Q/(QNN)| =|Q|/|Q N N|=m/|QNN|. It
follows that s = |Q N N|.

Problem 2. Let G and H be groups. On the set G x H define a multiplication by
(9, h)(a,b) = (ga, hb).

a) Prove that G x H with above defined multiplication is a group. It is called the
product of G and H.

b) Prove that the maps 7¢ : G x H — G and 7y : G x H — H defined by
7c(g,h) = g and 7wy (g, h) = h are homomorphisms. What are the kernels of these

maps?

c¢) Suppose that G = H and let A = {(a,b) € G x G : a = b}. Prove that A is
a subgroup of G x G which is isomorphic to G. Prove that A is normal iff G is
abelian. If G is abelian, show that G x G/A is isomorphic to G.

d) Let f1 : Q — G and f5 : Q — H be homomorphisms. Define f: Q — G x H
by f(a) = (fi(a), fo(a)). Prove that f is a homomorphism and that ker f = ker f; N
ker fo. Conclude that if A, B are normal subgroups of a group G then G/(A N B)
is isomorphic to a subgroup of (G/A) x (G/B).
Solution: a) We need to check the axioms. For associativity,
[(a,b)(m,n)](g, h) = (am,bn)(g,h) = ((am)g, (bn)h) = (a(mg), b(nh)) =
= (a,0)(mg,nh) = (a,b)[(m,n)(g, h)].
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The identity of G x H is (e, e):

(g, h)(e,€) = (ge, he) = (g, h) = (eg. eh) = (e, €)(g, h).

Finally, the inverse of (g, h) is (¢7!, h™1):

(g.h) (g~ h") = (997" hh™1) = (e, e).

b) We have

ma((g,h)(a,b)) = ma(ga, hb) = ga = ma(g, h)Ta(a,b).

This shows that mg is a homomorphism and same argument works for 7. The
kernel of ¢ is the set of all pairs (g, h) such that g = e, so it is {e} x H (which is
naturally isomorphic to H). Similarly, the kernel of 7y is G x {e}.

c) Consider the map f : G — G x G defined by f(g) = (g,9). Clearly A is the

image of f. Note now that f is a homomorphism:

f(gh) = (gh,gh) = (g,9)(h,h) = f(g)f(h).

Since the image of a homomorphism is a subgroup, A is a subgroup. (Alternatively,
you can just check directly that A is a subgroup). Since the kernel of f is trivial,
we see that f gives an isomorphism between G and A.

Suppose that G is not abelian. Thus there are two elements g, h in G such
that gh # hg, i.e. hgh™' # g. Note that (g,9) € A and (h,e) € G x G but
(h,e)(g,9)(h,e)~ = (hgh™,g) & A. Thus A is not normal in G x G. Conversely,
if G is abelian then so is G x G, hence every subgroup of G x G is normal. In
particular A <G x G.

Suppose now that G is abelian. Consider the map ¢ : G X G — G defined by
#(g,h) = gh™'. Note that ¢ is a homomorphism:

(g, h)(a,b)) = ¢(ga, hb) = (ga)(hb)~" = gab™'h™" = gh~"ab™" = (g, h)¢(a, b).

Since g = ¢(g, e) for any g € G, we see that ¢ is surjective. The kernel of ¢ consists
of elements (g, h) such that gh™ = e, i.e. ¢ = h. Thus ker¢ = A. By the First

Isomorphism Theorem, G x G/A and G are isomorphic.

3



d) We have

f(ab) = (fi(ab), fa(ab)) = (fi(a)fi(D), fa(a)f2(b)) = (fi(a), f2(a))(fi(D), f2(b)) = f(a)f(D)

so f is a homomorphism. Note that f(a) = e iff fi(a) = e and fy(a) = e. This
means that ker f = ker f; N ker fs.

Let now f; : G — G/A and fy : G — G/ B be the canonical homomorphisms.
Then f is a homomorphism from G to (G/A) x (G /B) whose kernel is ker fiNker fy =
AN B. By the First Isomorphism Theorem, the image of f (which is a subgroup of
(G/A) x (G/B)) is isomorphic to G/(AN B).

Problem 3. Consider the dihedral group Dy, = {I,T,..., 7", S, ST, ...,ST" '} of

order 2n. Let f : Dy, — A be a homomorphism, where A is an abelian group.
a) Prove that T2 € ker f.

b) Prove that if n is odd then the image of f has either one or two elements. Give

example of a homomorphism f whith image of order 2.

c¢) Let n be even. Define a map g : Do, — Z/27 x Z /27 by

9(S“T") = (a + 2Z,b + 27.).

Prove that ¢ is a surjective homomorphism and find its kernel.

d) Prove that if n is even then the image of f is isomorphic to Z/27Z x Z /27 or Z/2

or the trivial group.

Solution: a) Recall that T'S = ST~'. Since f is a homomorphism and A is
abelian, we have f(T'S) = f(T)f(S) = f(S)f(T) and f(ST 1) = f(S)f(T)".
Thus f(S)f(T) = f(S)f(T)" and f(T) = f(T)~'. This means that f(T)* =e, i.e.
f(T?) =e. Thus T? € ker f.

b) Suppose that n = 2k — 1 is odd. Then T' = TT?*~! = T% = (T?)* € ker f. Thus,
ker f contains the subgroup < 7' >= {I,T,T?, ..., 7" '} which has index 2 in Ds,.
It follows that either ker f =< T > or ker f = Dy,,. In the former case, the image of
f has 2 elements and in the latter case it has one element (by the first isomorphism

theorem).



To get an example note that < T" > is a normal subgroup of D,, of index 2.

Thus the canonical homomorphism Dy, — Ds,,/ < T > has image of order 2.

c¢) Note that g is well defined, since if by = by (mod n) then by = by (mod 2) (for n
odd, this is would not be true). Recall that (S*T?)(S™T*) = Se+mTk+(=D"b_ Since
k+(—=1)™b=k+0b (mod 2) we see that

g((S°T")(S™T™)) = ((a+m)+27Z, (k+(—1)"b)+2Z) = ((a+m)+27Z, (k+b)+27Z) =

= (a+2Z,b+27Z) + (m + 27,k + 27) = g(S*T*)g(S™T").

This shows that ¢ is a homomorphism. The kernel of ¢ consists of S*T® such that
a and b are even, so kerg =< T? >. Now g¢(S) = (1 + 2Z,0 + 27Z), ¢g(T) =
(0+2Z,1+27Z), g(ST) = (14 2Z,1 + 2Z), so g is surjective.

d) By a), we have < T? >C ker f. By ¢), Dy,/ < T? > is isomorphic to Z/27Z x
Z/27. The image of f is isomorphic to Dy, /ker f. Let M be the subgroup of
Z7)27 x Z/2Z which corresponds to ker f in the Correspondence Theorem. By the
second isomorphism theorem, Dy, /ker f is isomorphic to (Z/2Z x Z/2Z)/M. If M
is trivial, then we see that the image of f is isomorphic to Z/27Z x Z/27Z. If |M| = 2
then (Z/27 x Z/2Z)/M has 2 elements, hence it is isomorphic to Z/2Z. Finally, if
|M| = 4 then the image of f is trivial.



