Homework

due on Tuesday, November 20 $\,$

Read sections 2.9 in Lauritzen's book and sections 3.1.2 Example 3 and 3.4.3 in Cameron's book.

Solve the following problems.

Problem 1. a) Find the product

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$$

b) Find the cycle decomposition and order of

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix};$$

2. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix};$
3. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix}.$

c) Express the following permutations as products of disjoint cycles and find their orders

- 1. (1, 2, 3, 4, 5)(1, 2, 3, 4, 6)(1, 2, 3, 4, 7);
- 2. $(1,2,3)(3,4,5,6)(1,2,3)^{-1};$
- 3. $(1, 2, 3, 4, 5, 6)^3$.

Express each of these permutations as a product of transpositions.

d) Find a permutation $\rho \in S_n$ such that $\rho \tau \rho^{-1} = \sigma$ or prove that no such ρ exists, where

1.
$$\tau = (1, 3, 4), \sigma = (2, 3, 5), n = 5;$$

2. $\tau = (1, 4)(2, 3, 5), \sigma = (2, 4, 1)(5, 3), n = 5;$

3. $\tau = (1, 3, 5, 7)(2, 4, 6), \sigma = (1, 6)(4, 5, 7, 3, 2).$

Problem 2. Let σ , τ be two transpositions in S_n , $n \ge 3$. Show that $\sigma\tau$ can be expressed as a product of 3-cycles (not necessarily disjoint).