Problem 1. a) Find the product

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$$

b) Find the cycle decomposition and order of

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix};$$

2. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix};$
3. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix}.$

c) Express the following permutations as products of disjoint cycles and find their orders

1. (1, 2, 3, 4, 5)(1, 2, 3, 4, 6)(1, 2, 3, 4, 7);

2.
$$(1,2,3)(3,4,5,6)(1,2,3)^{-1};$$

3.
$$(1, 2, 3, 4, 5, 6)^3$$
.

Express each of these permutations as a product of transpositions.

d) Find a permutation $\rho \in S_n$ such that $\rho \tau \rho^{-1} = \sigma$ or prove that no such ρ exists, where

1.
$$\tau = (1, 3, 4), \sigma = (2, 3, 5), n = 5;$$

2. $\tau = (1, 4)(2, 3, 5), \sigma = (2, 4, 1)(5, 3), n = 5;$
3. $\tau = (1, 3, 5, 7)(2, 4, 6), \sigma = (1, 6)(4, 5, 7, 3, 2).$
Solution: a)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}.$$

b)

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix} = (1,3,4,2)(5,7,9).$$
 It has order 12;
2. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} = (1,7)(2,6)(3,5).$ It has order 2;
3. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 3 & 2 & 1 & 4 \end{pmatrix} = (1,6)(2,5)(3,7,4).$ It has order 6.

1. $(1,2,3,4,5)(1,2,3,4,6)(1,2,3,4,7) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 1 & 2 & 3 \end{pmatrix} = (1,4,7,3,6,2,5) = (1,5)(1,2)(1,6)(1,3)(1,7)(1,4);$ It has order 7.

2.
$$(1,2,3)(3,4,5,6)(1,2,3)^{-1} = (1,4,5,6) = (1,6)(1,5)(1,4)$$
. It has order 4.;

3.
$$(1, 2, 3, 4, 5, 6)^3 = (1, 4)(2, 5)(3, 5)$$
. It has order 2.

d)

- 1. Since $\tau = (1, 3, 4)$ and $\sigma = (2, 3, 5)$ have the same type of cycle decomposition, they are conjugate in S_n . Any ρ such that $\rho(1) = 2$, $\rho(3) = 3$ and $\rho(4) = 5$ will work. For example, $\rho = (1, 2)(4, 5)$.
- 2. Since $\tau = (1, 4)(2, 3, 5)$ and $\sigma = (2, 4, 1)(5, 3)$ have the same type of cycle decomposition, they are conjugate in S_n . Any ρ such that $\rho(1) = 5$, $\rho(4) = 3$, $\rho(2) = 2$, $\rho(3) = 4$, $\rho(5) = 1$ will work. Thus $\rho = (1, 5)(4, 3)$.
- 3. The permutatuins $\tau = (1, 3, 5, 7)(2, 4, 6)$ and $\sigma = (1, 6)(4, 5, 7, 3, 2)$ have different structure of cycle decomposition so they are not conjugate.

Problem 2. Let σ , τ be two transpositions in S_n , $n \ge 3$. Show that $\sigma\tau$ can be expressed as a product of 3-cycles (not necessarily disjoint).

Solution: If σ , τ are disjoint then $\sigma = (a, b)$, $\tau = (c, d)$ and a, b, c, d are pairwise different. Then

$$(a,b)(c,d) = (a,b,c)(b,c,d).$$

If M_{σ} and M_{τ} have one element in common that we can write $\sigma = (a, b), \tau = (a, c)$, where a, b, c are pairwise different. Thus

$$(a,b)(a,c) = (a,c,b).$$

Finally, if M_{σ} and M_{τ} have more than one element in common then $\sigma = \tau$ (note that both M_{σ} and M_{τ} have 2 elements) so $\sigma \tau = id = (1, 2, 3)(1, 2, 3)(1, 2, 3)$.