
Problem 1. a) Which of the following permutations are even?

1.

(

1 2 3 4 5 6 7 8 9

2 4 5 1 3 7 8 9 6

)

;

2. (1, 2, 3, 4, 5, 6)(7, 8, 9);

3. (1, 2)(1, 2, 3)(4, 5)(5, 6, 8)(1, 7, 9).

b) Prove that a k−cycle is even iff k is odd.

c) In the even permutation

(

1 2 3 4 5 6 7 8 9

3 1 2 7 8 9 6

)

two entries are missing. Find the missing entries.

Solution: a) Checking whether a given permutation is odd or even directly from

the definition is not the most efficient way. Instead we will use part b) and the fact

that the sign of a permutation is a homomorphism.

1.

(

1 2 3 4 5 6 7 8 9

2 4 5 1 3 7 8 9 6

)

= (1, 2, 4)(3, 5)(6, 7, 8, 9). The sign of (1, 2, 4)

is 1 and the sign of both (3, 5) and (6, 7, 8, 9) is −1. Thus the sign of our

permutation is 1(−1)(−1) = 1, i.e. it is even.

2. The sign of the first factor of (1, 2, 3, 4, 5, 6)(7, 8, 9) is −1 and the second factor

has sign 1, so the product has sign −1, i.e. it is odd;

3. The product (1, 2)(1, 2, 3)(4, 5)(5, 6, 8)(1, 7, 9) has two odd permutations and

three even permutations so it is an even permutation. .

b) Let (a1, a2, ..., ak) be a k−cycle. We have seen that

(a1, a2, ..., ak) = (a1, ak)(a1, ak−1)...(a1, a2)

is a product of k − 1 transpositions. Thus (a1, a2, ..., ak) is odd if k − 1 is odd and

it is even if k − 1 is even. This proves our claim.
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c) One of the missing entries is 4 and the other is 5. If the first missing entry is

4 then our permutation is (1, 3, 2)(6, 7, 8, 9), which is an odd permutation. If the

first missing entry is 5 then our permutation is (1, 3, 2)(4, 5)(6, 7, 8, 9), which is even.

Thus our permuation is equal to
(

1 2 3 4 5 6 7 8 9

3 1 2 5 4 7 8 9 6

)

Problem 2. Prove that every element of An, n ≥ 3 is a product of 3−cycles.

Solution: In the solution to Problem 2 of homework 38 we showed that a product

of any two transpositions is a product of 3−cycles. Since any even permutation is a

product of an even number of transpositions, we see that an even permutation is a

product of 3−cycles (just pair the transpoitions).

Problem 3. a) Prove that the center of Sn is trivial for n ≥ 3.

b) Find the number of conjugacy classes in S6.

c) Prove that the centralizer of (1, 2, ..., k) in Sn has k(n − k)! elements.

Solution: a) Let τ be a non-trivial permutation. Thus τ(a) = b 6= a for some a.

Since n ≥ 3, there is c different form a and b. Note that τ(a, c)τ−1 = (τ(a), τ(c)) =

(b, τ(c)) 6= (a, c). Thus τ and (a, c) do not commute, so τ is not in the center of Sn.

This proves that the center of Sn is trivial.

b) Recall that two elements of Sn are conjugate iff they have the same type of cycle

decomposition, i.e. for each k they have the same number of k−cycyles in their cycle

decomposition. Now for n = 6, we have the following possible cycle decompositions:

1. one cycle of length 6;

2. one cycle of length 5

3. one cycle of length 4

4. one cycle of length 3

5. one cycle of length 2

6. two cycles, one of length 4 and one of length 2;
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7. two cycles, one of length 3 and one of length 2;

8. two cycles, each of length 3;

9. two cycles, each of length 2;

10. three cycles, each of length 2.

Thus S6 has 10 conjugacy classes.

c) Recall that for a permutation τ ∈ Sn we have τ(1, 2, ..., k)τ−1 = (τ(1), τ(2), ..., τ(k)).

Thus τ centralizes (1, 2, ..., k) iff (τ(1), τ(2), ..., τ(k)) = (1, 2, ..., k). If τ(1) = i for

i ∈ {1, 2, ..., k} then the values of τ on {1, 2, ..., k} are uniqually determined and

its values on {k + 1, ..., n} can be any permutation of {k + 1, ..., n}. Thus for each

i ∈ {1, 2, ..., k} we have (n − k)! elements centralizing (1, 2, ..., k) and taking 1 to i.

Since i can assume k values, the centralizer of (1, 2, ..., k) has k(n − k)! elements.

Problem 4. Let H be a subgroup of Sn which contains (1, 2) and (1, 2, 3, ..., n).

Prove that H = Sn. Hint: Show that H contains all transpositions.

Solution: Let τ = (1, 2, 3, ..., n). Since H is a subgroup and both τ, (1, 2) are

in H, also τ k(1, 2)τ−k = (τ k(1), τ k(2) = (k + 1, k + 2) ∈ H for k = 1, 2, ..., n − 2

and τn−1(1, 2)τ 1−n = (n, 1) ∈ H. Note now that for s < k < n we have (k, k +

1)(s, k)(k, k + 1) = (s, k + 1). We claim that this allows us to show that (i, j) ∈ H

for any i < j. In fact, we have seen that (i, i + 1) ∈ H and if (i, j) ∈ H with

i < j < n then also (i, j + 1) ∈ H. Thus H contains all transpositions. Since every

permutation is a product of transpositions, we see that H contains all permutations,

i.e. H = Sn.
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