
Problem 1. For positive integers a, b define [a, b] = ab/ gcd(a, b).

a) Prove that a/ gcd(a, b) and b/ gcd(a, b) are relatively prime.

b) Prove that if a|c and b|c then [a, b]|c.

c) Conlcude that [a, b] is the smallest positive integer divisible by both a and b (we

call it the least common multiple of a and b).

Solution: a) If d > 0 is a common divisor of a/ gcd(a, b) and b/ gcd(a, b) then

d gcd(a, b) divides both a and b and hence d gcd(a, b) ≤ gcd(a, b). It follows that

d ≤ 1, i.e. d = 1. In other words, a/ gcd(a, b) and b/ gcd(a, b) do not have any

positive common divisors different from 1, i.e. they are relatively prime.

b) Note that a|c implies that a

gcd(a,b)
| c

gcd(a,b)
. Similarly, b

gcd(a,b)
| c

gcd(a,b)
. Since by

a) the numbers a/ gcd(a, b) and b/ gcd(a, b) are relatively prime, we conclude that

their product also divides c/ gcd(a, b). In other words ab
gcd(a,b)2

| c
gcd(a,b)

. It follows that

[a, b] = ab

gcd(a,b)
|c.

c) Clearly [a, b] is divisible by both a and b. On the other hand, any positive integer

divisible by both a and b is according to b) also divisible by [a, b], hence it can not

be smaller than [a, b]. It means that [a, b] is the lest common multiple of a and b.

Problem 2. Let Fn = 22n

+ 1, for n = 0, 1, 2, ....

a) Prove that F0 · F1 · F2 · ... · Fn = Fn+1 − 2 for every n.

b) Prove that gcd(Fn, Fm) = 1 for n 6= m.

Solution: a) The easiest proof seems to be by induction on n. Since F0 = 3 =

5− 2 = F1 − 2, the result holds for n = 0. Suppose that it holds for some n ≥ 0, i.e.

F0 · F1 · F2 · ... · Fn = Fn+1 − 2 = 22n+1

− 1.

Multiplying both sides by Fn+1 = 22n+1

+ 1 we get

F0 · F1 · F2 · ... · Fn · Fn+1 = (22n+1

− 1)(22n+1

+ 1) = 22n+2

− 1 = Fn+2 − 2.

so the result holds for n + 1. By induction, it holds for every n ≥ 0.

b) Suppose that m < n and d is the greatest common divisor of Fm and Fn. Clearly

d divides F0 ·F1 ·F2 · ... ·Fn−1 (since Fm is one of the factors) and therefore it divides
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the difference Fn − F0 · F1 · F2 · ... · Fn−1, which is 2 by a). Thus d|2, i.e. d = 1

or d = 2. Hovewer d = 2 is not possible, since the numbers Fk are all odd. Hence

d = 1, i.e. gcd(Fn, Fm) = 1.

Solution to Problem 16 from the textbook: Given integrs m, n let S = {xm+

yn : x, y ∈ Z} be the set of all integers which can be expressed as xm + yn for some

integrs x, y.

i) Suppose that s, t ∈ S and q is any integer. Thus there are intgers x1, y1, x2, y2 such

that s = x1m + y1n and t = x2m + y2n. It follows that qs = (qx1)m + (qy1)n ∈ S

and s + t = (x1 + x2)m + (y1 + y2)n ∈ S. In other words, S is closed under addition

and multiplication by any integer.

ii) Suppose that S contains elements different from 0 (note that S = {0} iff m = 0 =

n; why?). Then S contains positive integers (why?). Let d be the smallest positive

element of S. We want to prove that S consists exactly of all multiples of d. Clearly

any multiple of d is in S, since by i) the set S is closed under multiplicatuion by any

integer. Conversly, let s ∈ S. By the divison algorithm, we may write s = kd+ r for

some integers k, r with 0 ≤ r < d. Thus r = s + (−k)d. Since s, d ∈ S, we conclude

from i) that (−k)d ∈ S and s + (−k)d ∈ S. In other words, r ∈ S. Recall that d

is the smallest positive element of S and 0 ≤ r < d is an element of S. Clearly this

can be true only if r = 0. Thus d|s. We proved then that any memember of S is

divisible by d, so indeed S consists exactly of multiples of d.

iii) Note that m = 1 · m + 0 · n and n = 0 · m + 1 · n are both in S. By ii), we see

then that d|m and d|n. Since d ∈ S, we can write d = xm + yn for some integers

x, y. If a is any common divisor of m and n then it is also a divisor of xm+ yn = d.

It follows that d is the greatest common divisor of m, n, it is divisible by any other

common divisor of m, n and it can be written in the form xm + yn. Thuse we have

a diiferent proof of the main properties of gcd.

Note: We will get back to this proof later, since almost verbatim it can be used

to establish unique factorization in so called principal ideal domains.
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