Problem 1. Let p be a prime. Prove that every group of order p? is abelian. Hint:

Use problem 2 of homework 35.

Solution: Let P be a group of order p?>. We proved that every p—group has
non-trivial, so the center Z(P) of P is not trivial. Thus |Z(P)] is either p or p?. In
the latter case, we have P = Z(P), so P is abelian. In the former case, P/Z(P) is
a group of order p. We know that groups of prime order p are cyclic, so P/Z(P) is
cyclic. By problem 2 of homework 35 P is abelian so Z(P) = P, a contradiction

(which shows that the former case is not possible). Thus P is abelian.

Remark. It is not hard to show that P as above is either cyclic of order p? or is

isomorphic to the product of two cyclic groups of order p.

Problem 2. Let GG be a finite group of order pg, where p < ¢ are primes.
a) Show that G has a normal Sylow g—subgroup.
b) Suppose that p1 (¢ — 1). Prove that G has a normal Sylow p—subgroup.

c¢) Suppose that p 1 (¢ — 1). Let P be the Sylow p—subgroup of G and let @ be
the Sylow g—subgroup of GG. Prove that elements of P commute with elements of

@ (problem 3b) from Test III can be useful). Conclude that G is a cyclic group.

Solution: a) Recall that the number ¢, of Sylow g—subgroups of G satisfies t,|p
and t, =1 (mod ¢) . If ¢, # 1 then t, > ¢+ 1 > p which contradicts the condition
tylp. Thus t, =1, i.e. G has normal Sylow ¢g—subgroup Q.

b) Asin a), we have t,|q and t, = 1 (mod p) . The first condition implies that ¢, = 1
or t, = q. The latter case implies that ¢ = 1 (mod p) , which is excluded by our
assumption that p{ (¢ — 1). Thus ¢, = 1 and G has normal Sylow p—subgroup P.

c¢) Note that the order of P N @ divides both the order of P and the order of Q).
Since these orders are relatively prime, we have P N Q) = {e}. Since both P, @) are
normal, problem 3b) from Test III says that elements from P and () commute. Note
that P has order p, hence it is cyclic, P =< a >. Similarly, () has prime order ¢, so
it is cyclic, ) =< b >. Now the order of a is p, the order of b is ¢ and a commutes
with b. It follows that the order of ab is pq (since ged(p,q) = 1, see Problem 1 of
hemework 35). Thus < ab > has order pg, so < ab >= G, i.e. G is cyclic.



Problem 3. This problem sketches a different proof of existence of Sylow p—subgroups.
Let p be a prime. Let G be a finite group and suppose that every group of order
smaller than |G| has a Sylow p—subgroup (so this proof goes by induction on |G]|).
If p 1 |G|, there is nothing to prove, so we assume that p||G|. We use the action of
G on itself by conjugation. Recall that the stabilizer of an elementa a € G is simply
its centralizer C'(a) (and orbits are the conjugacy classes). In particular, the fixed

points of this action are the elements of the center Z(G).

a) Prove that if p { |Z(G)| then there is a non-central element a whose conjugacy

class has size not divisible by p. Then justify the following claims:
e ('(a) is a proper subgroup of G so it has a Sylow p—subgroup P:;
e the index [G : C(a)] is prime to p;

e P is a Sylow P subgroup of G.

b) Suppose that p||Z(G)| and that Z(G) has an element g of order p. Show that
() =< g > is a normal subgroup of GG of order p. Conisder the canonical homomor-
phism f: G — G/Q. Since |G/Q| < |G|, G/Q has a Sylow p—subgroup P. Prove
that f~!(P) is a Sylow p—subgroup of G.

c¢) Suppose that p||Z(G)| and Z(G) has no elements of order p (we know that this
is not possible by Cauchy’s Theorem, but I do not want to use this theorem, since
we proved it using Sylow Theorem). Let a € Z(G) be a non-trivial element. Show
that p { | < a > |. Show that Z(G)/ < a > has no elements of order p. Since
|Z(G)) <a>]|<|G|, Z(G)/ < a > has a Sylow p—subgroup P. Show that P is

non-trivial and has an element of order p, a contradiction.

Solution: a) Conjugacy classes are the orbits. Note that Z(G) is the set of fixed
points so |Z(G)| is the number of fixed points. If every orbit had either size 1 or size
divisible by p, then (since orbits partition G) we would have |G| = |Z(G)| (mod p) ,
which is false (since p||G| and p 1 |Z(G)|). Thus there is a € G whose orbit, i.e.
conjugacy class, has size bigger than 1 and not divisible by p. In particular, a is

non-central.



Since C(a) is the stabilizer of a and a is not a fixed point, C(a) is a proper
subgroup of G so |C(a)| < |G|. Thus C(a) has a Sylow p—subgroup P. Recall
that [G : C(a)] is equal to the size of the orbit of a, so p {1 [G : C(a)]. Since
|G| = |C(a)|[G : C(a)], we see that the highest power of p which divides |G| is the
same as the highest power of p which divides |C'(a)|, which equals the order of P.
Thus P is a Sylow p—subgroup of G.

b) Since g € Z(G) has order p, the group ) =< g > has order p. Since @ is in the
center, () is normal in G (every subgroup of the center is normal, since conjugation
is trivial on the center). Let |G| = p®m, p t m. Then |G/Q| = p*'m. Thus

=1 Note that the canonical

G/@ has a Sylow p—subgroup P and its order is p
homomorphism f : G — G/Q maps the group R = f~!(P) onto P. It follows
that R/Q is isomorphic to P. Thus |R| = |P||Q| = p®~'p = p®. Tt follows that

f~Y(P) = R is a Sylow p—subgroup of G.

c) Suppose that p|| < a > |. Then the order of a is pk for some k and the order
of a* is p, contrary to our assumption that Z(G) has no elements of order p. This
proves that no element of Z(G) has order divisibleby p. Recall now that if f is
a homomorphism of groups than the order of f(g) divides the order of g for all g
(see Problem 1 c) of homework 35). Applying this to the canonical homomorphism
f:Z(G) — Z(G)/ < a > (which is surjective), we see that Z(G)/ < a > has no
elements of order divisible by p. In fact, if p divides the order of z € Z(G)/ < a >,
then x = f(y) for some y € Z(G) and p divides the order of y, a contradiction. On
the other hand, since p 1 | < a > | and p||Z(G)| we see that p divides the order
of Z(G)/ < a >. Since |Z(G)/ < a > | < |G|, Z(G)/ < a > has a non-trivial
Sylow p—subgroup P. But every non-trivial element of P has p—power order, a

contradiction. It follows that the assumptions of ¢) can not be realized.



