
Problem 1. Let p be a prime. Prove that every group of order p2 is abelian. Hint:

Use problem 2 of homework 35.

Solution: Let P be a group of order p2. We proved that every p−group has

non-trivial, so the center Z(P ) of P is not trivial. Thus |Z(P )| is either p or p2. In

the latter case, we have P = Z(P ), so P is abelian. In the former case, P/Z(P ) is

a group of order p. We know that groups of prime order p are cyclic, so P/Z(P ) is

cyclic. By problem 2 of homework 35 P is abelian so Z(P ) = P , a contradiction

(which shows that the former case is not possible). Thus P is abelian.

Remark. It is not hard to show that P as above is either cyclic of order p2 or is

isomorphic to the product of two cyclic groups of order p.

Problem 2. Let G be a finite group of order pq, where p < q are primes.

a) Show that G has a normal Sylow q−subgroup.

b) Suppose that p ∤ (q − 1). Prove that G has a normal Sylow p−subgroup.

c) Suppose that p ∤ (q − 1). Let P be the Sylow p−subgroup of G and let Q be

the Sylow q−subgroup of G. Prove that elements of P commute with elements of

Q (problem 3b) from Test III can be useful). Conclude that G is a cyclic group.

Solution: a) Recall that the number tq of Sylow q−subgroups of G satisfies tq|p

and tq ≡ 1 (mod q) . If tq 6= 1 then tq ≥ q + 1 > p which contradicts the condition

tq|p. Thus tq = 1, i.e. G has normal Sylow q−subgroup Q.

b) As in a), we have tp|q and tp ≡ 1 (mod p) . The first condition implies that tp = 1

or tp = q. The latter case implies that q ≡ 1 (mod p) , which is excluded by our

assumption that p ∤ (q − 1). Thus tp = 1 and G has normal Sylow p−subgroup P .

c) Note that the order of P ∩ Q divides both the order of P and the order of Q.

Since these orders are relatively prime, we have P ∩ Q = {e}. Since both P , Q are

normal, problem 3b) from Test III says that elements from P and Q commute. Note

that P has order p, hence it is cyclic, P =< a >. Similarly, Q has prime order q, so

it is cyclic, Q =< b >. Now the order of a is p, the order of b is q and a commutes

with b. It follows that the order of ab is pq (since gcd(p, q) = 1, see Problem 1 of

hemework 35). Thus < ab > has order pq, so < ab >= G, i.e. G is cyclic.
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Problem 3. This problem sketches a different proof of existence of Sylow p−subgroups.

Let p be a prime. Let G be a finite group and suppose that every group of order

smaller than |G| has a Sylow p−subgroup (so this proof goes by induction on |G|).

If p ∤ |G|, there is nothing to prove, so we assume that p||G|. We use the action of

G on itself by conjugation. Recall that the stabilizer of an elementa a ∈ G is simply

its centralizer C(a) (and orbits are the conjugacy classes). In particular, the fixed

points of this action are the elements of the center Z(G).

a) Prove that if p ∤ |Z(G)| then there is a non-central element a whose conjugacy

class has size not divisible by p. Then justify the following claims:

• C(a) is a proper subgroup of G so it has a Sylow p−subgroup P ;

• the index [G : C(a)] is prime to p;

• P is a Sylow P subgroup of G.

b) Suppose that p||Z(G)| and that Z(G) has an element g of order p. Show that

Q =< g > is a normal subgroup of G of order p. Conisder the canonical homomor-

phism f : G −→ G/Q. Since |G/Q| < |G|, G/Q has a Sylow p−subgroup P . Prove

that f−1(P ) is a Sylow p−subgroup of G.

c) Suppose that p||Z(G)| and Z(G) has no elements of order p (we know that this

is not possible by Cauchy’s Theorem, but I do not want to use this theorem, since

we proved it using Sylow Theorem). Let a ∈ Z(G) be a non-trivial element. Show

that p ∤ | < a > |. Show that Z(G)/ < a > has no elements of order p. Since

|Z(G)/ < a > | < |G|, Z(G)/ < a > has a Sylow p−subgroup P . Show that P is

non-trivial and has an element of order p, a contradiction.

Solution: a) Conjugacy classes are the orbits. Note that Z(G) is the set of fixed

points so |Z(G)| is the number of fixed points. If every orbit had either size 1 or size

divisible by p, then (since orbits partition G) we would have |G| ≡ |Z(G)| (mod p) ,

which is false (since p||G| and p ∤ |Z(G)|). Thus there is a ∈ G whose orbit, i.e.

conjugacy class, has size bigger than 1 and not divisible by p. In particular, a is

non-central.
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Since C(a) is the stabilizer of a and a is not a fixed point, C(a) is a proper

subgroup of G so |C(a)| < |G|. Thus C(a) has a Sylow p−subgroup P . Recall

that [G : C(a)] is equal to the size of the orbit of a, so p ∤ [G : C(a)]. Since

|G| = |C(a)|[G : C(a)], we see that the highest power of p which divides |G| is the

same as the highest power of p which divides |C(a)|, which equals the order of P .

Thus P is a Sylow p−subgroup of G.

b) Since g ∈ Z(G) has order p, the group Q =< g > has order p. Since Q is in the

center, Q is normal in G (every subgroup of the center is normal, since conjugation

is trivial on the center). Let |G| = pam, p ∤ m. Then |G/Q| = pa−1m. Thus

G/Q has a Sylow p−subgroup P and its order is pa−1. Note that the canonical

homomorphism f : G −→ G/Q maps the group R = f−1(P ) onto P . It follows

that R/Q is isomorphic to P . Thus |R| = |P ||Q| = pa−1p = pa. It follows that

f−1(P ) = R is a Sylow p−subgroup of G.

c) Suppose that p|| < a > |. Then the order of a is pk for some k and the order

of ak is p, contrary to our assumption that Z(G) has no elements of order p. This

proves that no element of Z(G) has order divisibleby p. Recall now that if f is

a homomorphism of groups than the order of f(g) divides the order of g for all g

(see Problem 1 c) of homework 35). Applying this to the canonical homomorphism

f : Z(G) −→ Z(G)/ < a > (which is surjective), we see that Z(G)/ < a > has no

elements of order divisible by p. In fact, if p divides the order of x ∈ Z(G)/ < a >,

then x = f(y) for some y ∈ Z(G) and p divides the order of y, a contradiction. On

the other hand, since p ∤ | < a > | and p||Z(G)| we see that p divides the order

of Z(G)/ < a >. Since |Z(G)/ < a > | < |G|, Z(G)/ < a > has a non-trivial

Sylow p−subgroup P . But every non-trivial element of P has p−power order, a

contradiction. It follows that the assumptions of c) can not be realized.
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