Homework

due on Monday, September 10

Problem 1. a) Prove that any natural number n such that $n \equiv 3 \pmod{4}$ has a prime divisor p such that $p \equiv 3 \pmod{4}$ (hint: note that every odd prime number q either satisfies $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$; what can you say about product of primes of the first type?)

b) Prove that $n! - 1 \equiv 3 \pmod{4}$ for any n > 3.

c) Prove that every prime divisor of n! - 1 is bigger than n.

d) Conclude that there are infinitely many primes q such that $q \equiv 3 \pmod{4}$.

Problem 2. Prove that every composite number *n* has a prime divisor not larger than \sqrt{n} .

Problem 3. The numbers n, n+2, n+4 are prime. What is n? Prove your answer. (Hint: consider these numbers modulo 3).

Read section 1.8 of Lauritzen's book.