Problem 1. a) Prove that any natural number n such that $n \equiv 3 \pmod{4}$ has a prime divisor p such that $p \equiv 3 \pmod{4}$ (hint: note that every odd prime number q either satisfies $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$; what can you say about product of primes of the first type?)

- b) Prove that $n! 1 \equiv 3 \pmod{4}$ for any n > 3.
- c) Prove that every prime divisor of n! 1 is bigger than n.
- d) Conclude that there are infinitely many primes q such that $q \equiv 3 \pmod{4}$.

Solution: a) Note that for every odd integer m either $m \equiv 1 \pmod{4}$ or $m \equiv 3 \pmod{4}$. Also, iff $a_1, ..., a_s$ are integers satisfying $a_i \equiv 1 \pmod{4}$ for i = 1, 2, ..., s then by multiplying these congruences we see that $a_1a_2...a_s \equiv 1 \pmod{4}$.

Consider now a positive integer $n \equiv 3 \pmod{4}$. Note that n is odd, so all its prime divisors are odd. We know that n is a product of prime numbers. If each of these prime numbers were $\equiv 1 \pmod{4}$, then according to our remark above, also their product n would be $\equiv 1 \pmod{4}$, which is false. Thus n must have a prime divisor $p \equiv 3 \pmod{4}$.

b) If n > 3 then $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ is divisible by 4. Thus $n! \equiv 0 \pmod{4}$ and $n! - 1 \equiv -1 \equiv 3 \pmod{4}$.

c) If $p \leq n$ then p divides n! and therefore does not divide n! - 1. It follows that any divisor of n! - 1 is larger than n.

d) Let n > 3. By a) and b) there is a prime number $q \equiv 3 \pmod{4}$ which divides n! - 1 and q > n by c). Thus there are arbitrarily large primes $\equiv 3 \pmod{4}$, so the set of such primes is infinite.

Problem 2. Prove that every composite number *n* has a prime divisor not larger than \sqrt{n} .

Solution: Since *n* is composite, we may factor *n* as n = ab, where $1 < a \le b$. Thus $n = ab \ge a^2$ and $\sqrt{n} \ge a$. Any prime divisor of *a* is a prime divisor of *n* and it is $\le \sqrt{n}$.

Problem 3. The numbers n, n+2, n+4 are prime. What is n? Prove your answer. (Hint: consider these numbers modulo 3).

Solution: Note that one of the congruences $n \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$, $n \equiv 2 \pmod{3}$ holds. If $n \equiv 0 \pmod{3}$ then 3|n. Since n is a prime, we must have n = 3 and then indeed n + 2 = 5, n + 4 = 7 are primes.

If $n \equiv 1 \pmod{3}$ then $n + 2 \equiv 3 \equiv 0 \pmod{3}$, i.e. 3|n + 2. Since n + 2 is a prime, we must have 3 = n + 2, i.e. n = 1. Hovewer, n = 1 is not a prime, so this case is not possible.

If $n \equiv 2 \pmod{3}$ then $n + 4 \equiv 6 \equiv 0 \pmod{3}$, i.e. 3|n + 4. Again, since n + 4 is prime, we have n + 4 = 3, i.e. n = -1, which is not possible.

Thus n = 3 is the only solution.