
Problem 1. Let p, q be distinct prime numbers. Prove that

pq−1 + qp−1 ≡ 1 (mod pq) .

Solution: Since p 6= q are prime numbers, we have gcd(p, q) = 1. By Fermat’s

Little Theorem, pq−1 ≡ 1 (mod q) . Clearly qp−1 ≡ 0 (mod q) . Thus

pq−1 + qp−1 ≡ 1 (mod q) .

Exchanging the roles of p and q in the above argument, we prove that

pq−1 + qp−1 ≡ 1 (mod p) .

In other words, pq−1 + qp−1 − 1 is divisible by both p and q. Since p and q are

relatively prime, we conclude that pq−1+qp−1−1 is divisible by pq, i.e. pq−1+qp−1 ≡

1 (mod pq) .

Problem 2. Let m,n be positive integers such that m|n. Prove that φ(m)|φ(n)

and that φ(mn) = mφ(n)

Solution: Since m|n, we can number the prime divisors of n such that

m = pa1

1 ...pas

s and n = pb1
1 ...pbs

s p
bs+1

s+1 ...pbt

t ,

where t ≥ s, 0 < ai ≤ bi for i = 1, 2, ..., s and 0 < bi for i > s, and p1, ..., pt are

pairwise distinct prime numbers.

Now

φ(m) = (p1 − 1)pa1−1
1 ...(ps − 1)pas−1

s

and

φ(n) = (p1 − 1)pb1−1
1 ...(ps − 1)pbs−1

s (ps+1 − 1)pbs+1−1...(pt − 1)pbt−1
t .

It is clear now that φ(m)|φ(n). Moreover, mn = pa1+b1
1 ...pas+bs

s p
bs+1

s+1 ...pbt

t and

φ(mn) = (p1 − 1)pa1+b1−1
1 ...(ps − 1)pas+bs−1

s (ps+1 − 1)pbs+1−1...(pt − 1)pbt−1
t = mφ(n).

Second solution: Suppose that the result is false and let m|n be a counterexample

with smallest possible n. Clerly m > 1 (since the result holds trivially for m = 1).

Let p be a prime divisor of m. Thus we can write m = pam1 and n = pbn1 for some
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0 < a ≤ b and natural numbers n1,m1 not divisible by p. Since m1|n = pbn1 and

gcd(p,m1) = 1, we have m1|n1. Also

φ(m) = φ(pa)φ(m1) = (p − 1)pa−1φ(m1),

φ(n) = φ(pb)φ(n1) = (p − 1)pb−1φ(n1)

and

φ(mn) = φ(pa+b)φ(m1n1) = (p − 1)pa+b−1φ(m1n1).

Since m1|n1 and n1 < n, the result is true for m1, n1, i.e. φ(m1)|φ(n1) and φ(m1n1) =

m1φ(n1). But then

φ(m) = (p − 1)pa−1φ(m1)|(p − 1)pb−1φ(m1)|(p − 1)pb−1φ(n1) = φ(n)

and

φ(mn) = (p − 1)pa+b−1φ(m1n1) = pam1(p − 1)pbφ(n1) = mφ(n)

so the result is true for m,n contrary to our assumption. The contradiction proves

that no counterexample to our result exists.

Problem 3. Compute φ(2592), φ(111111), φ(15!).

Solution: We have

2592 = 4 · 648 = 4 · 4 · 162 = 25 · 81 = 25 · 34

Thus φ(2592) = φ(25)φ(34) = 24 · 2 · 33 = 25 · 33.

Clearly 111111 is divisible by 11,3 so

111111 = 11 · 10101 = 11 · 3 · 3367

Now 3367 is divisible by 7: 3367 = 7 · 481. The next prime to consider is 13 and

indeed 481 = 13 · 37. Thus 111111 = 3 · 7 · 11 · 13 · 37 and

φ(111111) = φ(3)φ(7)φ(11)φ(13)φ(37) = 2 · 6 · 10 · 12 · 36 = 27 · 34 · 5.

Finally 15! = 211 · 36 · 53 · 72 · 11 · 13, so

φ(15!) = φ(211)φ(36)φ(53)φ(72)φ(11)φ(13) = 210 ·2·35 ·4·52 ·6·7·10·12 = 217 ·37 ·53 ·7.
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Problem 4. Prove that 561 is a composite number and a561 ≡ a (mod 561) for

every integer a.

Solution: Let us first note the following corollary from Fermat’s Little Theorem:

Proposition 1. Let p be a prime number. For any integer n and any natural number

k we have nk(p−1)+1 ≡ n (mod p) .

Indeed, if p|a then both sides of the congruence are ≡ 0 (mod p) and if gcd(p, a) =

1 then np−1 ≡ 1 (mod p) and nk(p−1)+1 = n(np−1)k ≡ n (mod p) .

We have 561 = 3 ·187 = 3 ·11 ·17, so 561 is not a prime. Now 561 = 280 ·2+1 =

56 · 10 + 1 = 35 · 16 + 1. By the proposition, n561 ≡ n (mod 3) , n561 ≡ n (mod 11)

and n561 ≡ n (mod 17) for every integer n. Thus n561 − n is divisible by 3, 11,

17 and since these numbers are pairwise relatively prime, 3 · 11 · 17|n561 − n, i.e.

n561 ≡ n (mod 561) for every integer n.
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