Test 1, take-home due on Tuesday, April 1

Problem 1. Find the minimal polynomial of $\sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} . What are the other roots of this polynomial?

Problem 2. Let L/K be a finite extension of fields. Suppose that $f \in K[x]$ is irreducible over K and its degree is relatively prime to [L : K]. Prove that f is irreducible in L[x].

Problem 3. Let $\Phi_n(x)$ be the *n*-th cyclotomic polynomial and let *p* be a prime number.

a) Prove that if p|n then $\Phi_{pn}(x) = \Phi_n(x^p)$.

b) Prove that if $p \nmid n$ then $\Phi_n(x^p) = \Phi_n(x)\Phi_{np}(x)$.

Problem 4. Let *L* be a field and let *p* be a prime number. Suppose that F_1, F_2, K are subfields of *L* such that F_1/K and F_2/K are Galois and both $Gal(F_1/K)$ and $Gal(F_2/K)$ are *p*-groups. Prove that the Galois groups of F_1F_2/K and $F_1 \cap F_2/K$ are also *p*-groups.

Problem 5. a) Prove that the Galois group of the splitting field of $x^3 - 3$ over \mathbb{Q} is isomorphic to the symmetric group S_3 hence is nonabelian.

b) Prove that $\mathbb{Q}(\sqrt[3]{3})$ is not a subfield of any cyclotomic field $\mathbb{Q}(\zeta_n)$.