Test 1, take-home
due on Tuesday, April 1

Problem 1. Find the minimal polynomial of V24 /4 over Q. What are the other

roots of this polynomial?

Solution: Let a = v/2 + /4. Let f be the minimal polynomial of a over Q and let
K be a splitting field of 23 — 2 over Q. Clearly a € K. Let u be the primitive 3-rd
root of 1, so v/2, uv/2, and u?y/2 are the roots of 23 — 2 in K. It follows that u € K.
From Galois theory, there are authomorphisms o, 7 of K/Q such that o(v/2) = uv/2
and o(3/2) = u?¥/2 (since 2° — 2 is irreducible over Q). Note that v/4 = \%2. It
follows that o(a) = uv/2 + u?v/4 and 7(a) = u?v/2 + u~v/4 are roots of f. Note that

(z—a)(z—0(a))(xz—7(a)) = 2°—(a+0o(a)+71(a))x*+(ac(a)+ar(a)+o(a)T(a))z—ac(a)T(a).

Now a + o(a) +7(a) = (1 +u + u?)(a + a®) = 0, ac(a) + ar(a) + o(a)T(a) = —6,

ac(a)7(a) = 6 so
(x —a)(z —o(a))(z —7(a)) = 2> — 62 — 6
. It follows that 2® — 62 — 6 is the minimal polynomial of a.

Another solution: Clearly a € M = Q(+/2), so the degree of a over Q is a divisor
of [M : Q] = 3. Note that 1, v/2, \‘752 = V/4 is a basis of M/Q. Thus a = /2 + V4
is not in Q and hence it has degree 3 over Q. Note that

at= (V2 + V4?2 =4+ 2V2+ V4
and
@’ = (V2+ V1) =2+6V2+6V4+4=06(1+a).
Thus a® — 6a — 6 = 0, so 23 — 62 — 6is the minimal polynomial of a over Q.

Problem 2. Let L/K be a finite extension of fields. Suppose that f € Kl[z] is
irreducible over K and its degree is relatively prime to [L : K|. Prove that f is

irreducible in L|x].

Solution: Let F be a field extension of L in which f has a root a. Since f is
irreducible in K[z|, we have [K(a) : K| = d, where d is the degree of f. Let
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m = [L(a) : L], so clearly m < d. Then [L(a) : K] = m|[L : K]. On the other hand,
[L(a) : K] = [L(a) : K(a)][K(a) : K] =d[L(a) : K(a)]. Thus d|m|[L : K], and since
d and [L : K| are relatively prime, we have d|m. But m < d, so we must have m = d.
This means that the minimal polynomial of a over L has degree d and therefore f

is the minimal polynomial of @ over L. In particuler, f is irreducible over L.

Problem 3. Let ®,(z) be the n—th cyclotomic polynomial and let p be a prime

number.
a) Prove that if p|n then ®,,(z) = ®,(aP).

b) Prove that if p { n then ®,(a?) = ®,(x)®,,(z).

Solution: Let u be a primitive np-th root of 1. Then u? is a primitive n-th root of
1so @, (u?) = 0. It follows that every root of @, is a root of @, (2?), so @,,| P, ().
If p|n, then ¢(np) = pp(n), so ®,, and P, (z*) have the same degree and are both
monic. It follows that ®,,(x) = ®,,(2”) which proves a).

Suppose now that p t n. If w is a primitive n-th root of 1, then w? is also a
primitive n-th root of 1. Thus ®,(w?) = 0. We see that every root of @, is also a
root of ®,,(2?). Thus ®,,|P,(2?). Since ®,, and D, are relatively prime, we see that
P, ()P ()| Py (2?). But both @, (x)®,,(z) and P, (z*) are monic and have degree
o(np) = é(n)o(p), so we must have &,,(27) = &, (x)P,,(x). This proves b).
Problem 4. Let L be a field and let p be a prime number. Suppose that Fi, Fy, K
are subfields of L such that Fy/K and Fy/K are Galois and both Gal(F;/K) and
Gal(Fy/K) are p-groups. Prove that the Galois groups of FyFy/K and Fy N Fy/K

are also p-groups.

Solution: Let L = F} Fy. Since both F}/K and F,/K are Galois, so is L/K. Let
G = Gal(L/K) and let Hy, Hy be the subgroups corresponding to Fi, F, respectively
(so H; = Gal(L/F;),1=1,2). Thus H; < G and G/ H, is isomorphic to Gal(F;/K),
i =1,2. Thus G/H, and G/H; are p-groups. Rcall that Gal(F} F;/K) is isomorphic
to G/Hy N Hy and Gal(Fy N Fy/K) is isomorphic to G/ Hy Hs.

Thus we reduced the problem to a problem about groups: if Hy, H, are normal
subgroups of a group G such that G/H; and G/H; are p-groups then G/H; N Hy
and G/H,H, are also p-groups.



Note that there is a surjective homomorphism G/H; — G/H;H; which sends
a coset gH; to the coset g(H;Hs) (i=1,2). Since an image of a p-group under a
homomorphism is also a p-group (why?), we see that G/H; Hs is a p-group.

To see that G/H; N Hs is a p-group recall the following very useful observation:
the group G/H; N Hy is isomorphic to a subgroup of G/H; x G/H,. In fact, it is
easy to check that the map which sends a coset g(Hy N Hz) to the pair (gHq, gHs) is
an injective homomorphism G/H, N Hy — G/H; x G/H; (see Problem 2d) from
Homework 37 of Math 401 for more details). Since a product of two p groups is a
p-group and a subgroup of a p-group is also a p-group, we see that G/H; N Hy is a
p-group.

Problem 5. a) Prove that the Galois group of the splitting field of 23 — 3 over Q

is isomorphic to the symmetric group S3 hence is nonabelian.

b) Prove that Q(+/3) is not a subfield of any cyclotomic field Q(,).

Solution: a) Let L be a splitting field of 23 — 3 over Q. Let a = /3 and let u be
a primitive 3-rd root of 1. Then a, ua, u?a are the roots of 2* — 3 so L = Q(a,u).
Note that [Q(a) : Q] = 3, since #® — 3 is irreducible over Q. Since Q(a) consists ot
real numbers and u is not real, we have u € Q(a). Since u is of degree 2 over Q, we
must have [Q(a,u) : Q(a)] = 2 and [Q(a,u) : Q] = 6. Thus the Galois group G of
L/Q has order 6. Note that G permutes the roots of x* — 2 so it can be identified
with a subgroup Ss;. But both G and S3 have order 6, so GG is isomorphoic to S3. In

particular, G is not abelian.

b) Suppose that Q(+/3) is a subfield of some cyclotomic field Q(¢,). Recall that
Q(¢,)/Q is Galois. Thus z® — 2 must have all its roots in Q(¢,), so L € Q(¢,). Let
A be the Galois group Gal(Q((,)/Q) and let B be the subgroup corresponding to L
(so B = Gal(Q(¢,)/L)). Since L/(Q is Galois, we have B < A and G is isomorphic
to A/B. Recall that A is abelian, which implies that A/B is abelian. Thus G is
abelian, which contradicts a). Our assumption that Q(+/3) is a subfield of some
cyclotomic field Q(¢,) is then false.



