
Test 1, take-home

due on Tuesday, April 1

Problem 1. Find the minimal polynomial of 3
√

2 + 3
√

4 over Q. What are the other

roots of this polynomial?

Solution: Let a = 3
√

2 + 3
√

4. Let f be the minimal polynomial of a over Q and let

K be a splitting field of x3 − 2 over Q. Clearly a ∈ K. Let u be the primitive 3-rd

root of 1, so 3
√

2, u 3
√

2, and u2 3
√

2 are the roots of x3−2 in K. It follows that u ∈ K.

From Galois theory, there are authomorphisms σ, τ of K/Q such that σ( 3
√

2) = u 3
√

2

and σ( 3
√

2) = u2 3
√

2 (since x3 − 2 is irreducible over Q). Note that 3
√

4 = 3
√

2
2

. It

follows that σ(a) = u 3
√

2 + u2 3
√

4 and τ(a) = u2 3
√

2 + u 3
√

4 are roots of f . Note that

(x−a)(x−σ(a))(x−τ(a)) = x3−(a+σ(a)+τ(a))x2+(aσ(a)+aτ(a)+σ(a)τ(a))x−aσ(a)τ(a).

Now a + σ(a) + τ(a) = (1 + u + u2)(a + a2) = 0, aσ(a) + aτ(a) + σ(a)τ(a) = −6,

aσ(a)τ(a) = 6 so

(x − a)(x − σ(a))(x − τ(a)) = x3 − 6x − 6

. It follows that x3 − 6x − 6 is the minimal polynomial of a.

Another solution: Clearly a ∈ M = Q( 3
√

2), so the degree of a over Q is a divisor

of [M : Q] = 3. Note that 1, 3
√

2, 3
√

2
2

= 3
√

4 is a basis of M/Q. Thus a = 3
√

2 + 3
√

4

is not in Q and hence it has degree 3 over Q. Note that

a2 = (
3
√

2 +
3
√

4)2 = 4 + 2
3
√

2 +
3
√

4

and

a3 = (
3
√

2 +
3
√

4)3 = 2 + 6
3
√

2 + 6
3
√

4 + 4 = 6(1 + a).

Thus a3 − 6a − 6 = 0, so x3 − 6x − 6is the minimal polynomial of a over Q.

Problem 2. Let L/K be a finite extension of fields. Suppose that f ∈ K[x] is

irreducible over K and its degree is relatively prime to [L : K]. Prove that f is

irreducible in L[x].

Solution: Let F be a field extension of L in which f has a root a. Since f is

irreducible in K[x], we have [K(a) : K] = d, where d is the degree of f . Let
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m = [L(a) : L], so clearly m ≤ d. Then [L(a) : K] = m[L : K]. On the other hand,

[L(a) : K] = [L(a) : K(a)][K(a) : K] = d[L(a) : K(a)]. Thus d|m[L : K], and since

d and [L : K] are relatively prime, we have d|m. But m ≤ d, so we must have m = d.

This means that the minimal polynomial of a over L has degree d and therefore f

is the minimal polynomial of a over L. In particuler, f is irreducible over L.

Problem 3. Let Φn(x) be the n−th cyclotomic polynomial and let p be a prime

number.

a) Prove that if p|n then Φpn(x) = Φn(xp).

b) Prove that if p ∤ n then Φn(xp) = Φn(x)Φnp(x).

Solution: Let u be a primitive np-th root of 1. Then up is a primitive n-th root of

1 so Φn(up) = 0. It follows that every root of Φnp is a root of Φn(xp), so Φnp|Φn(xp).

If p|n, then φ(np) = pφ(n), so Φnp and Φn(xp) have the same degree and are both

monic. It follows that Φpn(x) = Φn(xp) which proves a).

Suppose now that p ∤ n. If w is a primitive n-th root of 1, then wp is also a

primitive n-th root of 1. Thus Φn(wp) = 0. We see that every root of Φn is also a

root of Φn(xp). Thus Φn|Φn(xp). Since Φn and Φnp are relatively prime, we see that

Φn(x)Φnp(x)|Φn(xp). But both Φn(x)Φnp(x) and Φn(xp) are monic and have degree

φ(np) = φ(n)φ(p), so we must have Φn(xp) = Φn(x)Φnp(x). This proves b).

Problem 4. Let L be a field and let p be a prime number. Suppose that F1, F2,K

are subfields of L such that F1/K and F2/K are Galois and both Gal(F1/K) and

Gal(F2/K) are p-groups. Prove that the Galois groups of F1F2/K and F1 ∩ F2/K

are also p-groups.

Solution: Let L = F1F2. Since both F1/K and F2/K are Galois, so is L/K. Let

G = Gal(L/K) and let H1, H2 be the subgroups corresponding to F1, F2 respectively

( so Hi = Gal(L/Fi), i = 1, 2). Thus Hi ⊳ G and G/Hi is isomorphic to Gal(Fi/K),

i = 1, 2. Thus G/H1 and G/H2 are p-groups. Rcall that Gal(F1F2/K) is isomorphic

to G/H1 ∩ H2 and Gal(F1 ∩ F2/K) is isomorphic to G/H1H2.

Thus we reduced the problem to a problem about groups: if H1, H2 are normal

subgroups of a group G such that G/H1 and G/H2 are p-groups then G/H1 ∩ H2

and G/H1H2 are also p-groups.
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Note that there is a surjective homomorphism G/Hi −→ G/H1H2 which sends

a coset gHi to the coset g(H1H2) (i=1,2). Since an image of a p-group under a

homomorphism is also a p-group (why?), we see that G/H1H2 is a p-group.

To see that G/H1 ∩ H2 is a p-group recall the following very useful observation:

the group G/H1 ∩ H2 is isomorphic to a subgroup of G/H1 × G/H2. In fact, it is

easy to check that the map which sends a coset g(H1∩H2) to the pair (gH1, gH2) is

an injective homomorphism G/H1 ∩ H2 −→ G/H1 × G/H2 (see Problem 2d) from

Homework 37 of Math 401 for more details). Since a product of two p groups is a

p-group and a subgroup of a p-group is also a p-group, we see that G/H1 ∩ H2 is a

p-group.

Problem 5. a) Prove that the Galois group of the splitting field of x3 − 3 over Q

is isomorphic to the symmetric group S3 hence is nonabelian.

b) Prove that Q( 3
√

3) is not a subfield of any cyclotomic field Q(ζn).

Solution: a) Let L be a splitting field of x3 − 3 over Q. Let a = 3
√

3 and let u be

a primitive 3-rd root of 1. Then a, ua, u2a are the roots of x3 − 3 so L = Q(a, u).

Note that [Q(a) : Q] = 3, since x3 − 3 is irreducible over Q. Since Q(a) consists ot

real numbers and u is not real, we have u 6∈ Q(a). Since u is of degree 2 over Q, we

must have [Q(a, u) : Q(a)] = 2 and [Q(a, u) : Q] = 6. Thus the Galois group G of

L/Q has order 6. Note that G permutes the roots of x3 − 2 so it can be identified

with a subgroup S3. But both G and S3 have order 6, so G is isomorphoic to S3. In

particular, G is not abelian.

b) Suppose that Q( 3
√

3) is a subfield of some cyclotomic field Q(ζn). Recall that

Q(ζn)/Q is Galois. Thus x3 − 2 must have all its roots in Q(ζn), so L ⊆ Q(ζn). Let

A be the Galois group Gal(Q(ζn)/Q) and let B be the subgroup corresponding to L

(so B = Gal(Q(ζn)/L)). Since L/(Q is Galois, we have B ⊳ A and G is isomorphic

to A/B. Recall that A is abelian, which implies that A/B is abelian. Thus G is

abelian, which contradicts a). Our assumption that Q( 3
√

3) is a subfield of some

cyclotomic field Q(ζn) is then false.
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